
MapStruct 1.0.0.Final Reference Guide
Gunnar Morling, Andreas Gudian, Sjaak Derksen

2016-02-13

Table of Contents
Preface . 1

1. Introduction . 1

2. Set up . 1

2.1. Configuration options . 4

3. Defining a mapper . 5

3.1. Basic mappings . 5

3.2. Generating mappers from abstract classes . 8

3.3. Mapping methods with several source parameters . 8

3.4. Nested mappings . 9

3.5. Updating existing bean instances. 10

4. Retrieving a mapper . 10

4.1. The Mappers factory . 10

4.2. Using dependency injection . 11

5. Data type conversions . 12

5.1. Implicit type conversions . 12

5.2. Mapping object references . 14

5.3. Invoking other mappers . 15

5.4. Passing the mapping target type to custom mappers . 16

5.5. Mapping method resolution . 17

5.6. Mapping method selection based on qualifiers . 17

6. Mapping collections . 20

6.1. Mapping maps . 23

6.2. Collection mapping strategies . 24

6.3. Implementation types used for collection mappings . 25

7. Mapping enum types . 26

8. Object factories. 26

9. Advanced mapping options. 28

9.1. Default values and constants . 28

9.2. Expressions . 29

9.3. Determining the result type . 30

9.4. Controlling mapping result for 'null' arguments . 31

9.5. Exceptions . 32

10. Reusing mapping configurations . 33

10.1. Mapping configuration inheritance . 33

10.2. Inverse mappings . 34

10.3. Shared configurations . 35

11. Customizing mappings . 37

11.1. Mapping customization with decorators . 38

11.2. Mapping customization with before-mapping and after-mapping methods 41

Preface
This is the reference documentation of MapStruct, an annotation processor for generating type-
safe, performant and dependency-free bean mapping code. This guide covers all the functionality
provided by MapStruct. In case this guide doesn’t answer all your questions just join the MapStruct
Google group to get help.

You found a typo or other error in this guide? Please let us know by opening an issue in the
MapStruct GitHub repostory, or, better yet, help the community and send a pull request for fixing
it!

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

1. Introduction
MapStruct is a Java annotation processor for the generation of type-safe bean mapping classes.

All you have to do is to define a mapper interface which declares any required mapping methods.
During compilation, MapStruct will generate an implementation of this interface. This
implementation uses plain Java method invocations for mapping between source and target
objects, i.e. no reflection or similar.

Compared to writing mapping code from hand, MapStruct saves time by generating code which is
tedious and error-prone to write. Following a convention over configuration approach, MapStruct
uses sensible defaults but steps out of your way when it comes to configuring or implementing
special behavior.

Compared to dynamic mapping frameworks, MapStruct offers the following advantages:

• Fast execution by using plain method invocations instead of reflection

• Compile-time type safety: Only objects and attributes mapping to each other can be mapped, no
accidental mapping of an order entity into a customer DTO etc.

• Clear error-reports at build time, if entities or attributes can’t be mapped

2. Set up
MapStruct is a Java annotation processor based on JSR 269 and as such can be used within
command line builds (javac, Ant, Maven etc.) as well as from within your IDE.

It comprises the following artifacts:

• org.mapstruct:mapstruct: contains the required annotations such as @Mapping; On Java 8 or later,
use org.mapstruct:mapstruct-jdk8 instead which takes advantage of language improvements
introduced in Java 8

• org.mapstruct:mapstruct-processor: contains the annotation processor which generates mapper
implementations

1

https://groups.google.com/forum/?fromgroups#!forum/mapstruct-users
https://github.com/mapstruct/mapstruct
http://creativecommons.org/licenses/by-sa/4.0/
http://docs.oracle.com/javase/6/docs/technotes/guides/apt/index.html
http://www.jcp.org/en/jsr/detail?id=269

For Maven based projects add the following to your POM file in order to use MapStruct:

2

Example 1. Maven configuration

...
<properties>
 <org.mapstruct.version>1.0.0.Final</org.mapstruct.version>
</properties>
...
<dependencies>
 <dependency>
 <groupId>org.mapstruct</groupId>
 <artifactId>mapstruct-jdk8</artifactId>
 <version>${org.mapstruct.version}</version>
 </dependency>
</dependencies>
...
<build>
 <plugins>
 <plugin>
 <groupId>org.bsc.maven</groupId>
 <artifactId>maven-processor-plugin</artifactId>
 <version>2.2.4</version>
 <configuration>
 <defaultOutputDirectory>
 ${project.build.directory}/generated-sources
 </defaultOutputDirectory>
 <processors>
 <processor>org.mapstruct.ap.MappingProcessor</processor>
 </processors>
 </configuration>
 <executions>
 <execution>
 <id>process</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>process</goal>
 </goals>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>org.mapstruct</groupId>
 <artifactId>mapstruct-processor</artifactId>
 <version>${org.mapstruct.version}</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
</build>

3

2.1. Configuration options
The MapStruct code generator can be configured using annotation processor options.

When invoking javac directly, these options are passed to the compiler in the form -Akey=value.
When using MapStruct via Maven, any processor options can be passed using an options element
within the configuration of the Maven processor plug-in like this:

Example 2. Maven configuration

...
<plugin>
 <groupId>org.bsc.maven</groupId>
 <artifactId>maven-processor-plugin</artifactId>
 <configuration>
 <processors>
 <processor>org.mapstruct.ap.MappingProcessor</processor>
 </processors>
 <options>
 <mapstruct.suppressGeneratorTimestamp>
true</mapstruct.suppressGeneratorTimestamp>
 <mapstruct.defaultComponentModel>cdi</mapstruct.defaultComponentModel>
 </options>
 ...
 </configuration>
 ...
<plugin>
...

The following options exist:

Table 1. MapStruct processor options

Option Purpose Default

mapstruct.
suppressGeneratorTimes
tamp

If set to true, the creation of a time stamp in the
@Generated annotation in the generated mapper
classes is suppressed.

false

mapstruct.
suppressGeneratorVersi
onInfoComment

If set to true, the creation of the comment attribute
in the @Generated annotation in the generated
mapper classes is suppressed. The comment
contains information about the version of
MapStruct and about the compiler used for the
annotation processing.

false

4

Option Purpose Default

mapstruct.defaultCompo
nentModel

The name of the component model (see
Retrieving a mapper) based on which mappers
should be generated. Supported values are: *
default: the mapper uses no component model,
instances are typically retrieved via
Mappers#getMapper(Class) * cdi: the generated
mapper is an application-scoped CDI bean and
can be retrieved via @Inject * spring: the
generated mapper is a singleton-scoped Spring
bean and can be retrieved via @Autowired *
jsr330: the generated mapper is annotated with
{@code @Named} and can be retrieved via
@Inject, e.g. using Spring If a component model
is given for a specific mapper via
@Mapper#componentModel(), the value from the
annotation takes precedence.

default

mapstruct.unmappedTarg
etPolicy

The default reporting policy to be applied in case
an attribute of the target object of a mapping
method is not populated with a source value.
Supported values are: * ERROR: any unmapped
target property will cause the mapping code
generation to fail * WARN: any unmapped target
property will cause a warning at build time *
IGNORE: unmapped target properties are ignored
If a policy is given for a specific mapper via
@Mapper#unmappedTargetPolicy(), the value from
the annotation takes precedence.

WARN

3. Defining a mapper
In this section you’ll learn how to define a bean mapper with MapStruct and which options you
have to do so.

3.1. Basic mappings
To create a mapper simply define a Java interface with the required mapping method(s) and
annotate it with the org.mapstruct.Mapper annotation:

5

Example 3. Maven configuration

@Mapper
public interface CarMapper {

 @Mappings({
 @Mapping(source = "make", target = "manufacturer"),
 @Mapping(source = "numberOfSeats", target = "seatCount")
 })
 CarDto carToCarDto(Car car);

 @Mapping(source = "name", target = "fullName")
 PersonDto personToPersonDto(Person person);
}

The @Mapper annotation causes the MapStruct code generator to create an implementation of the
CarMapper interface during build-time.

In the generated method implementations all readable properties from the source type (e.g. Car)
will be copied ino the corresponding property in the target type (e.g. CarDto). If a property has a
different name in the target entity, its name can be specified via the @Mapping annotation.


The property name as defined in the JavaBeans spefication must be specified in
the @Mapping annotation, e.g. seatCount for a property with the accessor methods
getSeatCount() and setSeatCount().


When using Java 8 or later, you can omit the @Mappings wrapper annotation and
directly specify several @Mapping annotations on one method.

To get a better understanding of what MapStruct does have a look at the following implementation
of the carToCarDto() method as generated by MapStruct:

6

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

Example 4. Code generated by MapStruct

// GENERATED CODE
public class CarMapperImpl implements CarMapper {

 @Override
 public CarDto carToCarDto(Car car) {
 if (car == null) {
 return null;
 }

 CarDto carDto = new CarDto();

 if (car.getFeatures() != null) {
 carDto.setFeatures(new ArrayList<String>(car.getFeatures()));
 }
 carDto.setManufacturer(car.getMake());
 carDto.setSeatCount(car.getNumberOfSeats());
 carDto.setDriver(personToPersonDto(car.getDriver()));
 carDto.setPrice(String.valueOf(car.getPrice()));
 if (car.getCategory() != null) {
 carDto.setCategory(car.getCategory().toString());
 }

 return carDto;
 }

 @Override
 public PersonDto personToPersonDto(Person person) {
 //...
 }
}

The general philosophy of MapStruct is to generate code which looks as much as possible as if you
had written it yourself from hand. In particular this means that the values are copied from source
to target by plain getter/setter invocations instead of reflection or similar.

As the example shows the generated code takes into account any name mappings specified via
@Mapping. If the type of a mapped attribute is different in source and target entity, MapStruct will
either apply an automatic conversion (as e.g. for the price property, see also Implicit type
conversions) or optionally invoke another mapping method (as e.g. for the driver property, see also
Mapping object references).

Collection-typed attributes with the same element type will be copied by creating a new instance of
the target collection type containing the elements from the source property. For collection-typed
attributes with different element types each element will mapped individually and added to the
target collection (see Mapping collections).

7

MapStruct takes all public properties of the source and target types into account. This includes
properties declared on super-types.

3.2. Generating mappers from abstract classes
In some cases it can be required to manually implement a specific mapping from one type to
another which can’t be generated by MapStruct. One way for this is to implement such method on
another class which then is used by mappers generated by MapStruct (see Invoking other mappers).

Alternatively you can define a mapper in form of an abstract class instead of an interface and
implement custom methods directly in this mapper class. In this case MapStruct will generate an
extension of the abstract class with implementations of all abstract methods.

As an example let’s assume the mapping from Person to PersonDto requires some special logic which
can’t be generated by MapStruct. You could then define the mapper from the previous example like
this:

Example 5. Mapper defined by an abstract class

@Mapper
public abstract class CarMapper {

 @Mappings(...)
 public abstract CarDto carToCarDto(Car car);

 public PersonDto personToPersonDto(Person person) {
 //hand-written mapping logic
 }
}

MapStruct will generate a sub-class of CarMapper with an implementation of the carToCarDto()
method as it is declared abstract. The generated code in carToCarDto() will invoke the manually
implemented personToPersonDto() method when mapping the driver attribute.

3.3. Mapping methods with several source parameters
MapStruct also supports mapping methods with several source parameters. This is useful e.g. in
order to combine several entities into one data transfer object. The following shows an example:

8

Example 6. Mapping method with several source parameters

@Mapper
public interface AddressMapper {

 @Mappings({
 @Mapping(source = "person.description", target = "description"),
 @Mapping(source = "address.houseNo", target = "houseNumber")
 })
 DeliveryAddressDto personAndAddressToDeliveryAddressDto(Person person, Address
address);
}

The shown mapping method takes two source parameters and returns a combined target object. As
with single-parameter mapping methods properties are mapped by name.

In case several source objects define a property with the same name, the source parameter from
which to retrieve the property must be specified using the @Mapping annotation as shown for the
description property in the example. An error will be raised when such an ambiguity is not
resolved. For properties which only exist once in the given source objects it is optional to specify
the source parameter’s name as it can be determined automatically.


Specifying the parameter in which the property resides is mandatory when using
the @Mapping annotation.


Mapping methods with several source parameters will return null in case all the
source parameters are null. Otherwise the target object will be instantiated and
all properties from the provided parameters will be propagated.

3.4. Nested mappings
MapStruct will handle nested mappings, by means of the . notation:

Example 7. Mapping method with several source parameters

@Mappings({
 @Mapping(target = "chartName", source = "chart.name"),
 @Mapping(target = "title", source = "song.title"),
 @Mapping(target = "artistName", source = "song.artist.name"),
 @Mapping(target = "recordedAt", source = "song.artist.label.studio.name"),
 @Mapping(target = "city", source = "song.artist.label.studio.city"),
 @Mapping(target = "position", source = "position")
})
ChartEntry map(Chart chart, Song song, Integer position);

9

Note: the parameter name (chart, song, position) is required, since there are several source
parameters in the mapping. If there’s only one source parameter, the parameter name can be
ommited.

MapStruct will perform a null check on each nested property in the source.


Also non java bean source parameters (like the java.lang.Integer) can be mapped
in this fashion.

3.5. Updating existing bean instances
In some cases you need mappings which don’t create a new instance of the target type but instead
update an existing instance of that type. This sort of mapping can be realized by adding a
parameter for the target object and marking this parameter with @MappingTarget. The following
shows an example:

Example 8. Update method

@Mapper
public interface CarMapper {

 void updateCarFromDto(CarDto carDto, @MappingTarget Car car);
}

The generated code of the updateCarFromDto() method will upate the passed Car instance with the
properties from the given CarDto object. There may be only one parameter marked as mapping
target. Instead of void you may also set the method’s return type to the type of the target parameter,
which will cause the generated implementation to update the passed mapping target and return it
as well. This allows for fluent invocations of mapping methods.

Collection- or map-typed properties of the target bean to be updated will be cleared and then
populated with the values from the corresponding source collection or map.

4. Retrieving a mapper

4.1. The Mappers factory
Mapper instances can be retrieved via the org.mapstruct.factory.Mappers class. Just invoke the
getMapper() method, passing the interface type of the mapper to return:

Example 9. Using the Mappers factory

CarMapper mapper = Mappers.getMapper(CarMapper.class);

10

By convention, a mapper interface should define a member called INSTANCE which holds a single
instance of the mapper type:

Example 10. Declaring an instance of a mapper

@Mapper
public interface CarMapper {

 CarMapper INSTANCE = Mappers.getMapper(CarMapper.class);

 CarDto carToCarDto(Car car);
}

This pattern makes it very easy for clients to use mapper objects without repeatedly instantiating
new instances:

Example 11. Accessing a mapper

Car car = ...;
CarDto dto = CarMapper.INSTANCE.carToCarDto(car);

Note that mappers generated by MapStruct are thread-safe and thus can safely be accessed from
several threads at the same time.

4.2. Using dependency injection
If you’re working with a dependency injection framework such as CDI (Contexts and Dependency
Injection for JavaTM EE) or the Spring Framework, it is recommended to obtain mapper objects via
dependency injection as well. For that purpose you can specify the component model which
generated mapper classes should be based on either via @Mapper#componentModel or using a
processor option as described in Configuration options.

Currently there is support for CDI and Spring (the later either via its custom annotations or using
the JSR 330 annotations). See Configuration options for the allowed values of the componentModel
attribute which are the same as for the mapstruct.defaultComponentModel processor option. In both
cases the required annotations will be added to the generated mapper implementations classes in
order to make the same subject to dependency injection. The following shows an example using
CDI:

11

http://jcp.org/en/jsr/detail?id=346
http://www.springsource.org/spring-framework

Example 12. A mapper using the CDI component model

@Mapper(componentModel = "cdi")
public interface CarMapper {

 CarDto carToCarDto(Car car);
}

The generated mapper implementation will be marked with the @ApplicationScoped annotation and
thus can be injected into fields, constructor arguments etc. using the @Inject annotation:

Example 13. Obtaining a mapper via dependency injection

@Inject
private CarMapper mapper;

A mapper which uses other mapper classes (see Invoking other mappers) will obtain these mappers
using the configured component model. So if CarMapper from the previous example was using
another mapper, this other mapper would have to be an injectable CDI bean as well.

5. Data type conversions
Not always a mapped attribute has the same type in the source and target objects. For instance an
attribute may be of type int in the source bean but of type Long in the target bean.

Another example are references to other objects which should be mapped to the corresponding
types in the target model. E.g. the class Car might have a property driver of the type Person which
needs to be converted into a PersonDto object when mapping a Car object.

In this section you’ll learn how MapStruct deals with such data type conversions.

5.1. Implicit type conversions
MapStruct takes care of type conversions automatically in many cases. If for instance an attribute is
of type int in the source bean but of type String in the target bean, the generated code will
transparently perform a conversion by calling String#valueOf(int) and Integer#parseInt(String),
respectively.

Currently the following conversions are applied automatically:

• Between all Java primitive data types and their corresponding wrapper types, e.g. between int
and Integer, boolean and Boolean etc. The generated code is null aware, i.e. when converting a
wrapper type into the corresponding primitive type a null check will performed.

• Between all Java primitive number types and the wrapper types, e.g. between int and long or

12

byte and Integer.


Converting from larger data types to smaller ones (e.g. from long to int) can cause
a value or precision loss. There will be an option for raising a warning in such
cases in a future MapStruct version.

• Between all Java primitive types (including their wrappers) and String, e.g. between int and
String or Boolean and String.

• Between enum types and String.

• Between big number types (java.math.BigInteger, java.math.BigDecimal) and Java primitive
types (including their wrappers) as well as String

• Between JAXBElement<T> and T, List<JAXBElement<T>> and List<T>

• Between java.util.Calendar/java.util.Date and JAXB’s XMLGregorianCalendar

• Between java.util.Date/XMLGregorianCalendar and String. A format string as understood by
java.text.SimpleDateFormat can be specified via the dateFormat option as this:

Example 14. Conversion from Date to String

@Mapper
public interface CarMapper {

 @Mapping(source = "manufacturingDate", dateFormat = "dd.MM.yyyy")
 CarDto carToCarDto(Car car);

 @IterableMapping(dateFormat = "dd.MM.yyyy")
 List<String> stringListToDateList(List<Date> dates);
}

• Between Jodas org.joda.time.DateTime, org.joda.time.LocalDateTime, org.joda.time.LocalDate,
org.joda.time.LocalTime and String. A format string as understood by
java.text.SimpleDateFormat can be specified via the dateFormat option (see above).

• Between Jodas org.joda.time.DateTime and java.util.Calendar.

• Between Jodas org.joda.time.LocalDateTime, org.joda.time.LocalDate and java.util.Date.

• Between java.time.ZonedDateTime, java.time.LocalDateTime, java.time.LocalDate,
java.time.LocalTime from Java 8 Date-Time package and String. A format string as understood
by java.text.SimpleDateFormat can be specified via the dateFormat option (see above).

• Between java.time.ZonedDateTime from Java 8 Date-Time package and java.util.Date where,
when mapping a ZonedDateTime from a given Date, systems default timezone is used.

• Between java.time.LocalDateTime from Java 8 Date-Time package and java.util.Date where.
When converting a LocalDateTime from a given Date, systems default timezone is used. When
mapping a Date to a LocalDateTime UTC is used as the timzone.

• Between java.time.ZonedDateTime from Java 8 Date-Time package and java.util.Calendar.

13

https://github.com/mapstruct/mapstruct/issues/5

• When converting from a String, omitting Mapping#dateFormat results in using the default pattern
and date format symbols for the default locale. An exception to this rule is XmlGregorianCalendar
which results in parsing the String according to XML Schema 1.0 Part 2, Section 3.2.7-14.1,
Lexical Representation.

5.2. Mapping object references
Typically an object has not only primitive attributes but also references other objects. E.g. the Car
class could contain a reference to a Person object (representing the car’s driver) which should be
mapped to a PersonDto object referenced by the CarDto class.

In this case just define a mapping method for the referenced object type as well:

Example 15. Mapper with one mapping method using another

@Mapper
public interface CarMapper {

 CarDto carToCarDto(Car car);

 PersonDto personToPersonDto(Person person);
}

The generated code for the carToCarDto() method will invoke the personToPersonDto() method for
mapping the driver attribute, while the generated implementation for personToPersonDto()

performs the mapping of person objects.

That way it is possible to map arbitrary deep object graphs. When mapping from entities into data
transfer objects it is often useful to cut references to other entities at a certain point. To do so,
implement a custom mapping method (see the next section) which e.g. maps a referenced entity to
its id in the target object.

When generating the implementation of a mapping method, MapStruct will apply the following
routine for each attribute pair in the source and target object:

• If source and target attribute have the same type, the value will be simply copied from source to
target. If the attribute is a collection (e.g. a List) a copy of the collection will be set into the
target attribute.

• If source and target attribute type differ, check whether there is a another mapping method
which has the type of the source attribute as parameter type and the type of the target attribute
as return type. If such a method exists it will be invoked in the generated mapping
implementation.

• If no such method exists MapStruct will look whether a built-in conversion for the source and
target type of the attribute exists. If this is the case, the generated mapping code will apply this
conversion.

• Otherwise an error will be raised at build time, indicating the non-mappable attribute.

14

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

5.3. Invoking other mappers
In addition to methods defined on the same mapper type MapStruct can also invoke mapping
methods defined in other classes, be it mappers generated by MapStruct or hand-written mapping
methods. This can be useful to structure your mapping code in several classes (e.g. with on mapper
type per application module) or you want to provide custom mapping logic which can’t be
generated by MapStruct.

For instance the Car class might contain an attribute manufacturingDate while the corresponding
DTO attribute is of type String. In order to map this attribute, you could implement a mapper class
like this:

Example 16. Manually implemented mapper class

public class DateMapper {

 public String asString(Date date) {
 return date != null ? new SimpleDateFormat("yyyy-MM-dd")
 .format(date) : null;
 }

 public Date asDate(String date) {
 try {
 return date != null ? new SimpleDateFormat("yyyy-MM-dd")
 .parse(date) : null;
 }
 catch (ParseException e) {
 throw new RuntimeException(e);
 }
 }
}

In the @Mapper annotation at the CarMapper interface reference the DateMapper class like this:

Example 17. Referencing another mapper class

@Mapper(uses=DateMapper.class)
public class CarMapper {

 CarDto carToCarDto(Car car);
}

When generating code for the implementation of the carToCarDto() method, MapStruct will look for
a method which maps a Date object into a String, find it on the DateMapper class and generate an
invocation of asString() for mapping the manufacturingDate attribute.

15

Generated mappers retrieve referenced mappers using the component model configured for them.
If e.g. CDI was used as component model for CarMapper, DateMapper would have to be a CDI bean as
well. When using the default component model, any hand-written mapper classes to be referenced
by MapStruct generated mappers must declare a public no-args constructor in order to be
instantiable.

5.4. Passing the mapping target type to custom
mappers
When having a custom mapper hooked into the generated mapper with @Mapper#uses(), an
additional parameter of type Class (or a super-type of it) can be defined in the custom mapping
method in order to perform general mapping tasks for specific target object types. That attribute
must be annotated with @TargetType for MapStruct to generate calls that pass the Class instance
representing the corresponding property type of the target bean.

For instance, the CarDto could have a property owner of type Reference that contains the primary key
of a Person entity. You could now create a generic custom mapper that resolves any Reference
objects to their corresponding managed JPA entity instances.

Example 18. Mapping method expecting mapping target type as parameter

@ApplicationScoped // CDI component model
public class ReferenceMapper {

 @PersistenceContext
 private EntityManager entityManager;

 public <T extends BaseEntity> T resolve(Reference reference, @TargetType
Class<T> entityClass) {
 return reference != null ? entityManager.find(entityClass, reference
.getPk()) : null;
 }

 public Reference toReference(BaseEntity entity) {
 return entity != null ? new Reference(entity.getPk()) : null;
 }
}

@Mapper(componentModel = "cdi", uses = ReferenceMapper.class)
public interface CarMapper {

 Car carDtoToCar(CarDto carDto);
}

MapStruct will then generate something like this:

16

Example 19. Generated code

//GENERATED CODE
@ApplicationScoped
public class CarMapperImpl implements CarMapper {

 @Inject
 private ReferenceMapper referenceMapper;

 @Override
 public Car carDtoToCar(CarDto carDto) {
 if (carDto == null) {
 return null;
 }

 Car car = new Car();

 car.setOwner(referenceMapper.resolve(carDto.getOwner(), Owner.class));
 // ...

 return car;
 }
}

5.5. Mapping method resolution
When mapping a property from one type to another, MapStruct looks for the most specific method
which maps the source type into the target type. The method may either be declared on the same
mapper interface or on another mapper which is registered via @Mapper#uses(). The same applies
for factory methods (see Object factories).

The algorithm for finding a mapping or factory method resembles Java’s method resolution
algorithm as much as possible. In particular, methods with a more specific source type will take
precedence (e.g. if there are two methods, one which maps the searched source type, and another
one which maps a super-type of the same). In case more than one most-specific method is found, an
error will be raised.



When working with JAXB, e.g. when converting a String to a corresponding
JAXBElement<String>, MapStruct will take the scope and name attributes of
@XmlElementDecl annotations into account when looking for a mapping method.
This makes sure that the created JAXBElement instances will have the right QNAME
value. You can find a test which maps JAXB objects here.

5.6. Mapping method selection based on qualifiers
In many occasions one requires mapping methods with the same method signature (appart from

17

https://github.com/mapstruct/mapstruct/blob/1.0.0.Final/integrationtest/src/test/java/org/mapstruct/itest/jaxb/JaxbBasedMapperTest.java

the name) that have different behavior. MapStruct has a handy mechanism to deal with such
situations: @Qualifier. A ‘qualifier’ is a custom annotation that the user can write, ‘stick onto’ a
mapping method which is included as used mapper, and can be referred to in a bean property
mapping, iterable mapping or map mapping. Multiple qualifiers can be ‘stuck onto’ a method and
mapping.

So, lets say there is a hand-written method to map titles with a String return type and String
argument amongst many other referenced mappers with the same String return type - String
argument signature:

Example 20. Several mapping methods with identical source and target types

public class Titles {

 public String translateTitleEG(String title) {
 // some mapping logic
 }

 public String translateTitleGE(String title) {
 // some mapping logic
 }
}

And a mapper using this handwritten mapper, in which source and target have a property 'title'
that should be mapped:

Example 21. Mapper causing an ambiguous mapping method error

@Mapper(uses = Titles.class)
public interface MovieMapper {

 GermanRelease toGerman(OriginalRelease movies);

}

Without the use of qualifiers, this would result in an ambiguous mapping method error, because 2
qualifying methods are found (translateTitleEG, translateTitleGE) and MapStruct would not have a
hint which one to choose.

Enter the qualifier approach:

18

Example 22. Declaring a qualifier type

@Qualifier
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.SOURCE)
public @interface TitleTranslator {
}

And, some qualifiers to indicate which translator to use to map from source language to target
language:

Example 23. Declaring qualifier types for mapping methods

@Qualifier
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.SOURCE)
public @interface EnglishToGerman {
}

@Qualifier
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.SOURCE)
public @interface GermanToEnglish {
}

Please take note of the retention TitleTranslator on class level, EnglishToGerman, GermanToEnglish on
method level!

Then, using the qualifiers, the mapping could look like this:

Example 24. Mapper using qualifiers

@Mapper(uses = Titles.class)
public interface MovieMapper {

 @Mapping(target = "title", qualifiedBy = { TitleTranslator.class,
EnglishToGerman.class })
 GermanRelease toGerman(OriginalRelease movies);

}

19

Example 25. Custom mapper qualifying the methods it provides

@TitleTranslator
public class Titles {

 @EnglishToGerman
 public String translateTitleEG(String title) {
 // some mapping logic
 }

 @GermanToEnglish
 public String translateTitleGE(String title) {
 // some mapping logic
 }
}


A class / method annotated with a qualifier will not qualify anymore for
mappings that do not have the qualifiedBy element.


The same mechanism is also present on bean mappings:
@BeanMapping#qualifiedBy: it selects the factory method marked with the indicated
qualifier.

6. Mapping collections
The mapping of collection types (List, Set etc.) is done in the same way as mapping bean types, i.e.
by defining mapping methods with the required source and target types in a mapper interface.
MapStruct supports a wide range of iterable types from the Java Collection Framework.

The generated code will contain a loop which iterates over the source collection, converts each
element and puts it into the target collection. If a mapping method for the collection element types
is found in the given mapper or the mapper it uses, this method is invoked to perform the element
conversion. Alternatively, if an implicit conversion for the source and target element types exists,
this conversion routine will be invoked. The following shows an example:

20

http://docs.oracle.com/javase/tutorial/collections/intro/index.html

Example 26. Mapper with collection mapping methods

@Mapper
public interface CarMapper {

 Set<String> integerSetToStringSet(Set<Integer> integers);

 List<CarDto> carsToCarDtos(List<Car> cars);

 CarDto carToCarDto(Car car);
}

The generated implementation of the integerSetToStringSet performs the conversion from Integer
to String for each element, while the generated carsToCarDtos() method invokes the carToCarDto()
method for each contained element as shown in the following:

1. Generated collection mapping methods

21

//GENERATED CODE
@Override
public Set<String> integerSetToStringSet(Set<Integer> integers) {
 if (integers == null) {
 return null;
 }

 Set<String> set = new HashSet<String>();

 for (Integer integer : integers) {
 set.add(String.valueOf(integer));
 }

 return set;
}

@Override
public List<CarDto> carsToCarDtos(List<Car> cars) {
 if (cars == null) {
 return null;
 }

 List<CarDto> list = new ArrayList<CarDto>();

 for (Car car : cars) {
 list.add(carToCarDto(car));
 }

 return list;
}

Note that MapStruct will look for a collection mapping method with matching parameter and
return type, when mapping a collection-typed attribute of a bean, e.g. from Car#passengers (of type
List<Person>) to CarDto#passengers (of type List<PersonDto>).

Example 27. Usage of collection mapping method to map a bean property

//GENERATED CODE
carDto.setPassengers(personsToPersonDtos(car.getPassengers()));
...

Some frameworks and libraries only expose JavaBeans getters but no setters for collection-typed
properties. Types generated from an XML schema using JAXB adhere to this pattern by default. In
this case the generated code for mapping such a property invokes its getter and adds all the
mapped elements:

22

Example 28. Usage of an adding method for collection mapping

//GENERATED CODE
carDto.getPassengers().addAll(personsToPersonDtos(car.getPassengers()));
...


It is not allowed to declare mapping methods with an iterable source and a non-
iterable target or the other way around. An error will be raised when detecting
this situation.

6.1. Mapping maps
Also map-based mapping methods are supported. The following shows an example:

Example 29. Map mapping method

public interface SourceTargetMapper {

 @MapMapping(valueDateFormat = "dd.MM.yyyy")
 Map<String, String> longDateMapToStringStringMap(Map<Long, Date> source);
}

Similar to iterable mappings, the generated code will iterate through the source map, convert each
value and key (either by means of an implicit conversion or by invoking another mapping method)
and put them into the target map:

23

Example 30. Generated implementation of map mapping method

//GENERATED CODE
@Override
public Map<Long, Date> stringStringMapToLongDateMap(Map<String, String> source) {
 if (source == null) {
 return null;
 }

 Map<Long, Date> map = new HashMap<Long, Date>();

 for (Map.Entry<String, String> entry : source.entrySet()) {

 Long key = Long.parseLong(entry.getKey());
 Date value;
 try {
 value = new SimpleDateFormat("dd.MM.yyyy").parse(entry.getValue()
);
 }
 catch(ParseException e) {
 throw new RuntimeException(e);
 }

 map.put(key, value);
 }

 return map;
}

6.2. Collection mapping strategies
MapStruct has a CollectionMappingStrategy, with the possible values: ACCESSOR_ONLY,
SETTER_PREFERRED and ADDER_PREFERRED.

In the table below, the dash - indicates a property name. Next, the trailing s indicates the plural
form. The table explains the options and how they are apply to the presence/absense of a set-s,
add- and / or get-s method on the target object:

Table 2. Collection mapping strategy options

Option Only target
set-s Available

Only target
add- Available

Both set-s /
add- Available

No set-s / add-
Available

Existing
Target(@Target
Type)

ACCESSOR_ONLY set-s get-s set-s get-s get-s

SETTER_PREFERR
ED

set-s add- set-s get-s get-s

24

Option Only target
set-s Available

Only target
add- Available

Both set-s /
add- Available

No set-s / add-
Available

Existing
Target(@Target
Type)

ADDER_PREFERRE
D

set-s add- add- get-s get-s

Some background: An adder method is typically used in case of generated (JPA) entities, to add a
single element (entity) to an underlying collection. Invoking the adder establishes a parent-child
relation between parent - the bean (entity) on which the adder is invoked - and its child(ren), the
elements (entities) in the collection. To find the appropriate adder, MapStruct will try to make a
match between the generic parameter type of the underlying collection and the single argument of
a candidate adder. When there are more candidates, the plural setter / getter name is converted to
singular and will be used in addition to make a match.

The option DEFAULT should not be used explicitely. It is used to distinguish between an explicit user
desire to override the default in a @MapperConfig from the implicit Mapstruct choice in a @Mapper.
The option DEFAULT is synonymous to ACCESSOR_ONLY.


When working with an adder method and JPA entities, Mapstruct assumes that
the target collections are initialized with a collection implementation (e.g. an
ArrayList). You can use factories to create a new target entity with intialized
collections in stead of Mapstruct creating the target entity by its constructor.

6.3. Implementation types used for collection
mappings
When an iterable or map mapping method declares an interface type as return type, one of its
implementation types will be instantiated in the generated code. The following table shows the
supported interface types and their corresponding implementation types as instantiated in the
generated code:

Table 3. Collection mapping implementation types

Interface type Implementation type

Iterable ArrayList

Collection ArrayList

List ArrayList

Set HashSet

SortedSet TreeSet

NavigableSet TreeSet

Map HashMap

SortedMap TreeMap

NavigableMap TreeMap

ConcurrentMap ConcurrentHashMap

25

http://www.eclipse.org/webtools/dali/

Interface type Implementation type

ConcurrentNavigableMap ConcurrentSkipListMap

7. Mapping enum types
MapStruct supports the generation of methods which map one Java enum type into another.

By default, each constant from the source enum is mapped to a constant with the same name in the
target enum type. If required, a constant from the source enum may be mapped to a constant with
another name with help of the @Mapping annotation. Several constants from the source enum can be
mapped to the same constant in the target type.

The following shows an example:

Example 31. Enum mapping method

@Mapper
public interface OrderMapper {

 OrderMapper INSTANCE = Mappers.getMapper(OrderMapper.class);

 @Mappings({
 @Mapping(source = "EXTRA", target = "SPECIAL"),
 @Mapping(source = "STANDARD", target = "DEFAULT"),
 @Mapping(source = "NORMAL", target = "DEFAULT")
 })
 ExternalOrderType orderTypeToExternalOrderType(OrderType orderType);
}

Note that an error will be raised by MapStruct in case a constant of the source enum type does not
have a corresponding constant with the same name in the target type and also is not mapped to
another constant via @Mapping. This ensures that all constants are mapped in a safe and predictable
manner.

8. Object factories
By default, the generated code for mapping one bean type into another will call the default
constructor to instantiate the target type.

Alternatively you can plug in custom object factories which will be invoked to obtain instances of
the target type. One use case for this is JAXB which creates ObjectFactory classes for obtaining new
instances of schema types.

To do make use of custom factories register them via @Mapper#uses() as described in Invoking other
mappers. When creating the target object of a bean mapping, MapStruct will look for a
parameterless method, or a method with only one @TargetType parameter that returns the required

26

target type and invoke this method instead of calling the default constructor:

Example 32. Custom object factories

public class DtoFactory {

 public CarDto createCarDto() {
 return // ... custom factory logic
 }
}

public class EntityFactory {

 public <T extends BaseEntity> T createEntity(@TargetType Class<T>
entityClass) {
 return // ... custom factory logic
 }
}

@Mapper(uses= { DtoFactory.class, EntityFactory.class })
public interface CarMapper {

 OrderMapper INSTANCE = Mappers.getMapper(CarMapper.class);

 CarDto carToCarDto(Car car);

 Car carDtoToCar(CarDto carDto);
}

27

//GENERATED CODE
public class CarMapperImpl implements CarMapper {

 private final DtoFactory dtoFactory = new DtoFactory();

 private final EntityFactory entityFactory = new EntityFactory();

 @Override
 public CarDto carToCarDto(Car car) {
 if (car == null) {
 return null;
 }

 CarDto carDto = dtoFactory.createCarDto();

 //map properties...

 return carDto;
 }

 @Override
 public Car carDtoToCar(CarDto carDto) {
 if (carDto == null) {
 return null;
 }

 Car car = entityFactory.createEntity(Car.class);

 //map properties...

 return car;
 }
}

9. Advanced mapping options
This chapter describes several advanced options which allow to fine-tune the behavior of the
generated mapping code as needed.

9.1. Default values and constants
Default values can be specified to set a predefined value to a target property if the corresponding
source property is null. Constants can be specified to set such a predefined value in any case.
Default values and constants are specified as String values and are subject to type conversion either
via built-in conversions or the invocation of other mapping methods in order to match the type
required by the target property.

28

A mapping with a constant must not include a reference to a source property. The following
examples shows some mappings using default values and constants:

Example 33. Mapping method with default values and constants

@Mapper(uses = StringListMapper.class)
public interface SourceTargetMapper {

 SourceTargetMapper INSTANCE = Mappers.getMapper(SourceTargetMapper.class);

 @Mappings({
 @Mapping(target = "stringProperty", source = "stringProp", defaultValue =
"undefined"),
 @Mapping(target = "longProperty", defaultValue = "-1"),
 @Mapping(target = "stringConstant", constant = "Constant Value"),
 @Mapping(target = "integerConstant", constant = "14"),
 @Mapping(target = "longWrapperConstant", constant = "3001"),
 @Mapping(target = "dateConstant", dateFormat = "dd-MM-yyyy", constant =
"09-01-2014"),
 @Mapping(target = "stringListConstants", constant = "jack-jill-tom")
 })
 Target sourceToTarget(Source s);
}

If s.getStringProp() == null, then the target property stringProperty will be set to "undefined"
instead of applying the value from s.getStringProp(). If s.getLongProp() == null, then the target
property longProperty will be set to -1. The String "Constant Value" is set as is to the target property
stringConstant. The value "3001" is type-converted to the Long (wrapper) class of target property
longWrapperConstant. Date properties also require a date format. The constant "jack-jill-tom"
demonstrates how the hand-written class StringListMapper is invoked to map the dash-separated
list into a List<String>.

9.2. Expressions
By means of Expressions it will be possible to include constructs from a number of languages.

Currently only Java is supported as language. This feature is e.g. useful to invoke constructors. The
entire source object is available for usage in the expression. Care should be taken to insert only
valid Java code: MapStruct will not validate the expression at generation-time, but errors will show
up in the generated classes during compilation.

The example below demonstrates how two source properties can be mapped to one target:

29

Example 34. Mapping method using an expression

@Mapper
public interface SourceTargetMapper {

 SourceTargetMapper INSTANCE = Mappers.getMapper(SourceTargetMapper.class);

 @Mapping(target = "timeAndFormat",
 expression = "java(new org.sample.TimeAndFormat(s.getTime(),
s.getFormat()))")
 Target sourceToTarget(Source s);
}

The example demonstrates how the source properties time and format are composed into one target
property TimeAndFormat. Please note that the fully qualified package name is specified because
MapStruct does not take care of the import of the TimeAndFormat class (unless its used otherwise
explicitly in the SourceTargetMapper). This can be resolved by defining imports on the @Mapper
annotation.

Example 35. Declaring an import

imports org.sample.TimeAndFormat;

@Mapper(imports = TimeAndFormat.class)
public interface SourceTargetMapper {

 SourceTargetMapper INSTANCE = Mappers.getMapper(SourceTargetMapper.class);

 @Mapping(target = "timeAndFormat",
 expression = "java(new TimeAndFormat(s.getTime(), s.getFormat()))")
 Target sourceToTarget(Source s);
}

9.3. Determining the result type
When result types have an inheritance relation, selecting either mapping method (@Mapping) or a
factory method (@BeanMapping) can becomes ambigious. Suppose an Apple and a Banana, which is
are both specializations of Fruit.

30

Example 36. Specifying the result type of a bean mapping method

@Mapper(uses = FruitFactory.class)
public interface FruitMapper {

 @BeanMapping(resultType = Apple.class)
 Fruit map(FruitDto source);

}

public class FruitFactory {

 public Apple createApple() {
 return new Apple("Apple");
 }

 public Banana createBanana() {
 return new Banana("Banana");
 }
}

So, which Fruit must be factorized in the mapping method Fruit map(FruitDto source);? A Banana
or an Apple? Here’s were the @BeanMapping#resultType comes in handy. It controls the factory
method to select, or in absence of a factory method, the return type to create.


The same mechanism is present on mapping: @Mapping#resultType and works like
you expect it would: it selects the mapping method with the desired result type
when present.



The mechanism is also present on iterable mapping and map mapping.
@IterableMapping#elementTargetType is used to select the mapping method with
the desired element in the resulting Iterable. For the @MapMapping a similar
purpose is served by means of #MapMapping#keyTargetType and
MapMapping#valueTargetType.

9.4. Controlling mapping result for 'null' arguments
MapStruct offers control over the object to create when the source argument of the mapping
method equals null. By default null will be returned.

However, by specifying nullValueMappingStrategy = NullValueMappingStrategy.RETURN_DEFAULT on
@BeanMapping, @IterableMapping, @MapMapping, or globally on @Mapper or @MappingConfig, the mapping
result can be altered to return empty default values. This means for:

• Bean mappings: an 'empty' target bean will be returned, with the exception of constants and

31

expressions, they will be populated when present.

• Primitives: the default values for primitives will be returned, e.g. false for boolean or 0 for int.

• Iterables / Arrays: an empty iterable will be returned.

• Maps: an empty map will be returned.

The strategy works in a hierarchical fashion. Setting nullValueMappingStrategy on mapping method
level will override @Mapper#nullValueMappingStrategy, and @Mapper#nullValueMappingStrategy will
override @MappingConfig#nullValueMappingStrategy.

9.5. Exceptions
Calling applications may require handling of exceptions when calling a mapping method. These
exceptions could be thrown by hand-written logic and by the generated built-in mapping methods
or type-conversions of MapStruct. When the calling application requires handling of exceptions, a
throws clause can be defined in the mapping method:

Example 37. Mapper using custom method declaring checked exception

@Mapper(uses = HandWritten.class)
public interface CarMapper {

 CarDto carToCarDto(Car car) throws GearException;
}

The hand written logic might look like this:

Example 38. Custom mapping method declaring checked exception

public class HandWritten {

 private static final String[] GEAR = {"ONE", "TWO", "THREE", "OVERDRIVE",
"REVERSE"};

 public String toGear(Integer gear) throws GearException, FatalException {
 if (gear == null) {
 throw new FatalException("null is not a valid gear");
 }

 if (gear < 0 && gear > GEAR.length) {
 throw new GearException("invalid gear");
 }
 return GEAR[gear];
 }
}

32

MapStruct now, wraps the FatalException in a try-catch block and rethrows an unchecked
RuntimeException. MapStruct delegates handling of the GearException to the application logic
because it is defined as throws clause in the carToCarDto method:

Example 39. try-catch block in generated implementation

// GENERATED CODE
@Override
public CarDto carToCarDto(Car car) throws GearException {
 if (car == null) {
 return null;
 }

 CarDto carDto = new CarDto();
 try {
 carDto.setGear(handWritten.toGear(car.getGear()));
 }
 catch (FatalException e) {
 throw new RuntimeException(e);
 }

 return carDto;
}

Some notes on null checks. MapStruct does provide null checking only when required: when
applying type-conversions or constructing a new type by invoking its constructor. This means that
the user is responsible in hand-written code for returning valid non-null objects. Also null objects
can be handed to hand-written code, since MapStruct does not want to make assumptions on the
meaning assigned by the user to a null object. Hand-written code has to deal with this.

10. Reusing mapping configurations
This chapter discusses different means of reusing mapping configurations for several mapping
methods: "inheritance" of configuration from other methods and sharing central configuration
between multiple mapper types.

10.1. Mapping configuration inheritance
Method-level configuration annotations such as @Mapping, @BeanMapping, @IterableMapping, etc., can
be inherited from one mapping method to a similar method using the annotation
@InheritConfiguration:

33

Example 40. Update method inheriting its configuration

@Mapper
public interface CarMapper {

 @Mapping(target = "numberOfSeats", source = "seatCount")
 Car carDtoToCar(CarDto car);

 @InheritConfiguration
 void carDtoIntoCar(CarDto carDto, @MappingTarget Car car);
}

The example above declares a mapping method carToDto() with a configuration to define how the
property numberOfSeats in the type Car shall be mapped. The update method that performs the
mapping on an existing instance of Car needs the same configuration to successfully map all
properties. Declaring @InheritConfiguration on the method lets MapStruct search for inheritance
candidates to apply the annotations of the method that is inherited from.

One method A can inherit the configuration from another method B if all types of A (source types
and result type) are assignable to the corresponding types of B.

Methods that are considered for inheritance need to be defined in the current mapper, a super
class/interface, or in the shared configuration interface (as described in Shared configurations).

In case more than one method is applicable as source for the inheritance, the method name must
be specified within the annotation: @InheritConfiguration(name = "carDtoToCar").

A method can use @InheritConfiguration and override or amend the configuration by additionally
applying @Mapping, @BeanMapping, etc.

10.2. Inverse mappings
In case of bi-directional mappings, e.g. from entity to DTO and from DTO to entity, the mapping
rules for the forward method and the reverse method are often similar and can simply be inversed
by switching source and target.

Use the annotation @InheritInverseConfiguration to indicate that a method shall inherit the inverse
configuration of the corresponding reverse method.

34

Example 41. Inverse mapping method inheriting its configuration

@Mapper
public interface CarMapper {

 @Mapping(source = "numberOfSeats", target = "seatCount")
 CarDto carToDto(Car car);

 @InheritInverseConfiguration
 Car carDtoToCar(CarDto carDto);
}

Here the carDtoToCar() method is the reverse mapping method for carToDto(). Note that any
attribute mappings from carToDto() will be applied to the corresponding reverse mapping method
as well. They are automatically reversed and copied to the method with the
@InheritInverseConfiguration annotation.

Specific mappings from the inversed method can (optionally) be overridden by ignore, expression
or constant in the mapping, e.g. like this: @Mapping(target = "numberOfSeats", ignore=true).

A method A is considered a reverse method of a method B, if the result type of A is the same as the
single source type of B and if the single source type of A is the same as the result type of B.

Methods that are considered for inverse inheritance need to be defined in the current mapper, a
super class/interface.

If multiple methods qualify, the method from which to inherit the configuration from needs to be
specified using the name property like this: @InheritInverseConfiguration(name = "carToDto").

Nested properties are excluded (silently ignored) from reverse mapping. The same holds true for
expressions and constants. Reverse mapping will take place automatically when the source
property name and target property name are identical. Otherwise, @Mapping should specify both the
target name and source name. In all cases, a suitable mapping method needs to be in place for the
reverse mapping.

10.3. Shared configurations
MapStruct offers the possibility to define a shared configuration by pointing to a central interface
annotated with @MapperConfig. For a mapper to use the shared configuration, the configuration
interface needs to be defined in the @Mapper#config property.

The @MapperConfig annotation has the same attributes as the @Mapper annotation. Any attributes not
given via @Mapper will be inherited from the shared configuration. Attributes specified in @Mapper
take precedence over the attributes specified via the referenced configuration class. List properties
such as uses are simply combined:

35

Example 42. Mapper configuration class and mapper using it

@MapperConfig(
 uses = CustomMapperViaMapperConfig.class,
 unmappedTargetPolicy = ReportingPolicy.ERROR
)
public interface CentralConfig {
}

@Mapper(config = CentralConfig.class, uses = { CustomMapperViaMapper.class })
// Effective configuration:
// @Mapper(
// uses = { CustomMapperViaMapper.class, CustomMapperViaMapperConfig.class },
// unmappedTargetPolicy = ReportingPolicy.ERROR
//)
public interface SourceTargetMapper {
 ...
}

The interface holding the @MapperConfig annotation may also declare prototypes of mapping
methods that can be used to inherit method-level mapping annotations from. Such prototype
methods are not meant to be implemented or used as part of the mapper API.

36

Example 43. Mapper configuration class with prototype methods

@MapperConfig(
 uses = CustomMapperViaMapperConfig.class,
 unmappedTargetPolicy = ReportingPolicy.ERROR,
 mappingInheritanceStrategy = MappingInheritanceStrategy
.AUTO_INHERIT_FROM_CONFIG
)
public interface CentralConfig {

 // Not intended to be generated, but to carry inheritable mapping annotations:
 @Mapping(target = "primaryKey", source = "technicalKey")
 BaseEntity anyDtoToEntity(BaseDto dto);
}

@Mapper(config = CentralConfig.class, uses = { CustomMapperViaMapper.class })
public interface SourceTargetMapper {

 @Mapping(target = "numberOfSeats", source = "seatCount")
 // additionally inherited from CentralConfig, because Car extends BaseEntity
and CarDto extends BaseDto:
 // @Mapping(target = "primaryKey", source = "technicalKey")
 Car toCar(CarDto car)
}

The attributes @Mapper#mappingInheritanceStrategy() / @MapperConfig#mappingInheritanceStrategy()
configure when the method-level mapping configuration annotations are inherited from prototype
methods in the interface to methods in the mapper:

• EXPLICIT (default): the configuration will only be inherited, if the target mapping method is
annotated with @InheritConfiguration and the source and target types are assignable to the
corresponding types of the prototype method, all as described in Mapping configuration
inheritance.

• AUTO_INHERIT_FROM_CONFIG: the configuration will be inherited automatically, if the source and
target types of the target mapping method are assignable to the corresponding types of the
prototype method. If multiple prototype methods match, the ambiguity must be resolved using
@InheritConfiguration(name = …).

11. Customizing mappings
Sometimes it’s needed to apply custom logic before or after certain mapping methods. MapStruct
provides two ways for doing so: decorators which allow for a type-safe customization of specific
mapping methods and the before-mapping and after-mapping lifecycle methods which allow for a
generic customization of mapping methods with given source or target types.

37

11.1. Mapping customization with decorators
In certain cases it may be required to customize a generated mapping method, e.g. to set an
additional property in the target object which can’t be set by a generated method implementation.
MapStruct supports this requirement using decorators.


When working with the component model cdi, use CDI decorators with
MapStruct mappers instead of the @DecoratedWith annotation described here.

To apply a decorator to a mapper class, specify it using the @DecoratedWith annotation.

Example 44. Applying a decorator

@Mapper
@DecoratedWith(PersonMapperDecorator.class)
public interface PersonMapper {

 PersonMapper INSTANCE = Mappers.getMapper(PersonMapper.class);

 PersonDto personToPersonDto(Person person);

 AddressDto addressToAddressDto(Address address);
}

The decorator must be a sub-type of the decorated mapper type. You can make it an abstract class
which allows to only implement those methods of the mapper interface which you want to
customize. For all non-implemented methods, a simple delegation to the original mapper will be
generated using the default generation routine.

The PersonMapperDecorator shown below customizes the personToPersonDto(). It sets an additional
attribute which is not present in the source type of the mapping. The addressToAddressDto() method
is not customized.

38

https://docs.jboss.org/cdi/spec/1.0/html/decorators.html

Example 45. Implementing a decorator

public abstract class PersonMapperDecorator implements PersonMapper {

 private final PersonMapper delegate;

 public PersonMapperDecorator(PersonMapper delegate) {
 this.delegate = delegate;
 }

 @Override
 public PersonDto personToPersonDto(Person person) {
 PersonDto dto = delegate.personToPersonDto(person);
 dto.setFullName(person.getFirstName() + " " + person.getLastName());
 return dto;
 }
}

The example shows how you can optionally inject a delegate with the generated default
implementation and use this delegate in your customized decorator methods.

For a mapper with componentModel = "default", define a constructor with a single parameter which
accepts the type of the decorated mapper.

When working with the component models spring or jsr330, this needs to be handled differently.

11.1.1. Decorators with the Spring component model

When using @DecoratedWith on a mapper with component model spring, the generated
implementation of the original mapper is annotated with the Spring annotation
@Qualifier("delegate"). To autowire that bean in your decorator, add that qualifier annotation as
well:

39

Example 46. Spring-based decorator

public abstract class PersonMapperDecorator implements PersonMapper {

 @Autowired
 @Qualifier("delegate")
 private PersonMapper delegate;

 @Override
 public PersonDto personToPersonDto(Person person) {
 PersonDto dto = delegate.personToPersonDto(person);
 dto.setName(person.getFirstName() + " " + person.getLastName());

 return dto;
 }
 }

The generated class that extends the decorator is annotated with Spring’s @Primary annotation. To
autowire the decorated mapper in the application, nothing special needs to be done:

Example 47. Using a decorated mapper

@Autowired
private PersonMapper personMapper; // injects the decorator, with the injected
original mapper

11.1.2. Decorators with the JSR 330 component model

JSR 330 doesn’t specify qualifiers and only allows to specifically name the beans. Hence, the
generated implementation of the original mapper is annotated with @Named("fully-qualified-name-
of-generated-implementation") (please note that when using a decorator, the class name of the
mapper implementation ends with an underscore). To inject that bean in your decorator, add the
same annotation to the delegate field (e.g. by copy/pasting it from the generated class):

40

Example 48. JSR 330 based decorator

public abstract class PersonMapperDecorator implements PersonMapper {

 @Inject
 @Named("org.examples.PersonMapperImpl_")
 private PersonMapper delegate;

 @Override
 public PersonDto personToPersonDto(Person person) {
 PersonDto dto = delegate.personToPersonDto(person);
 dto.setName(person.getFirstName() + " " + person.getLastName());

 return dto;
 }
}

Unlike with the other component models, the usage site must be aware if a mapper is decorated or
not, as for decorated mappers, the parameterless @Named annotation must be added to select the
decorator to be injected:

Example 49. Using a decorated mapper with JSR 330

@Inject
@Named
private PersonMapper personMapper; // injects the decorator, with the injected
original mapper


@DecoratedWith in combination with component model jsr330 is considered
experimental as of the 1.0.0.CR2 release. The way the original mapper is
referenced in the decorator or the way the decorated mapper is injected in the
application code might still change.

11.2. Mapping customization with before-mapping and
after-mapping methods
Decorators may not always fit the needs when it comes to customizing mappers. For example, if you
need to perform the customization not only for a few selected methods, but for all methods that
map specific super-types: in that case, you can use callback methods that are invoked before the
mapping starts or after the mapping finished.

Callback methods can be implemented in the abstract mapper itself or in a type reference in
Mapper#uses.

41

Example 50. Mapper with @BeforeMapping and @AfterMapping hooks

@Mapper
public abstract class VehicleMapper {

 @BeforeMapping
 protected void flushEntity(AbstractVehicle vehicle) {
 // I would call my entity manager's flush() method here to make sure my
entity
 // is populated with the right @Version before I let it map into the DTO
 }

 @AfterMapping
 protected void fillTank(AbstractVehicle vehicle, @MappingTarget
AbstractVehicleDto result) {
 result.fuelUp(new Fuel(vehicle.getTankCapacity(), vehicle.getFuelType()
));
 }

 public abstract CarDto toCarDto(Car car);
}

// Generates something like this:
public class VehicleMapperImpl extends VehicleMapper {

 public CarDto toCarDto(Car car) {
 flushEntity(car);

 if (car == null) {
 return null;
 }
 // ...

 fillTank(car, carDto);

 return carDto;
 }
}

Only methods with return type void may be annotated with @BeforeMapping or @AfterMapping. The
methods may or may not have parameters.

If the @BeforeMapping / @AfterMapping method has parameters, the method invocation is only
generated if all parameters can be assigned by the source or target parameters of the mapping
method:

• A parameter annotated with @MappingTarget is populated with the target instance of the
mapping.

42

• A parameter annotated with @TargetType is populated with the target type of the mapping.

• Any other parameter is populated with a source parameter of the mapping, whereas each
source parameter is used once at most.

All before/after-mapping methods that can be applied to a mapping method will be used. Mapping
method selection based on qualifiers can be used to further control which methods may be chosen
and which not. For that, the qualifier annotation needs to be applied to the before/after-method and
referenced in BeanMapping#qualifiedBy or IterableMapping#qualifiedBy.

The order in which the selected methods are applied is roughly determined by their location of
definition (although you should consider it a code smell if you need to rely on their order):

• The order of methods within one type can not be guaranteed, as it depends on the compiler and
the processing environment implementation.

• Methods declared in one type are used after methods declared in their super-type.

• Methods implemented in the mapper itself are used before methods from types referenced in
Mapper#uses.

• Types referenced in Mapper#uses are searched for before/after-mapping methods in the order
specified in the annotation.


@BeforeMapping and @AfterMapping are considered experimental as of the 1.0.0.CR1
release. Details in the selection of before/after mapping methods that are
applicable for a mapping method or the order in which they are called might still
be changed.

43

	MapStruct 1.0.0.Final Reference Guide
	Table of Contents
	Preface
	1. Introduction
	2. Set up
	2.1. Configuration options

	3. Defining a mapper
	3.1. Basic mappings
	3.2. Generating mappers from abstract classes
	3.3. Mapping methods with several source parameters
	3.4. Nested mappings
	3.5. Updating existing bean instances

	4. Retrieving a mapper
	4.1. The Mappers factory
	4.2. Using dependency injection

	5. Data type conversions
	5.1. Implicit type conversions
	5.2. Mapping object references
	5.3. Invoking other mappers
	5.4. Passing the mapping target type to custom mappers
	5.5. Mapping method resolution
	5.6. Mapping method selection based on qualifiers

	6. Mapping collections
	6.1. Mapping maps
	6.2. Collection mapping strategies
	6.3. Implementation types used for collection mappings

	7. Mapping enum types
	8. Object factories
	9. Advanced mapping options
	9.1. Default values and constants
	9.2. Expressions
	9.3. Determining the result type
	9.4. Controlling mapping result for 'null' arguments
	9.5. Exceptions

	10. Reusing mapping configurations
	10.1. Mapping configuration inheritance
	10.2. Inverse mappings
	10.3. Shared configurations

	11. Customizing mappings
	11.1. Mapping customization with decorators
	11.2. Mapping customization with before-mapping and after-mapping methods

