MapStruct 1.4.2.Final Reference
Guide

Table of Contents

Preface

1. Introduction
2. Setup

2.1
2.2.
2.3.
2.4,
2.5.

Apache Maven
Gradle

Apache Ant
Configuration options

Using MapStruct on Java 9

3. Defining a mapper

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

Basic mappings

Mapping Composition (experimental)

Adding custom methods to mappers

Mapping methods with several source parameters
Mapping nested bean properties to current target
Updating existing bean instances

Mappings with direct field access

Using builders

Using Constructors

4. Retrieving a mapper

4.1.
4.2.
4.3.

The Mappers factory (no dependency injection)
Using dependency injection

Injection strategy

5. Data type conversions

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

Implicit type conversions

Mapping object references

Controlling nested bean mappings

Invoking custom mapping method

Invoking other mappers

Passing the mapping target type to custom mappers
Passing context or state objects to custom methods
Mapping method resolution

Mapping method selection based on qualifiers

6. Mapping collections

6.1.

Mapping maps

o & o 1 W W w RN

A M DM W W W W W W LB OMOMDOMOMMDOMOMDOMPRPPRPRPPRERRPRPRER
O W O vV 00 N o & N P 0O 0 00 N O OO W O 0o N N o d W O O

6.2. Collection mapping strategies
6.3. Implementation types used for collection mappings
7. Mapping Streams
8. Mapping Values
8.1. Mapping enum to enum types
8.2. Mapping enum-to-String or String-to-enum
8.3. Custom name transformation
9. Object factories
10. Advanced mapping options
10.1. Default values and constants
10.2. Expressions
10.3. Default Expressions
10.4. Determining the result type
10.5. Controlling mapping result for 'null' arguments
10.6. Controlling mapping result for 'null’ properties in bean mappings (update mapping
methods only).
10.7. Controlling checking result for 'null' properties in bean mapping
10.8. Source presence checking
10.9. Exceptions
11. Reusing mapping configurations
11.1. Mapping configuration inheritance
11.2. Inverse mappings
11.3. Shared configurations
12. Customizing mappings
12.1. Mapping customization with decorators
12.2. Mapping customization with before-mapping and after-mapping methods
13. Using the MapStruct SPI
13.1. Custom Accessor Naming Strategy
Mapping Exclusion Provider
13.2. Custom Builder Provider
13.3. Custom Enum Naming Strategy
13.4. Custom Enum Transformation Strategy
14. Third-party API integration
14.1. Non-shipped annotations
14.2. Lombok

Preface

This is the reference documentation of MapStruct, an annotation processor for generating type-
safe, performant and dependency-free bean mapping code. This guide covers all the functionality
provided by MapStruct. In case this guide doesnOt answer all your questions just join the MapStruct

AT
48
49
50
50
53
54
57
62
62
63
64
65
66

67
68
68
68
70
70
71
73
45
75
78
81
81
84
86
87
91
91
91
92

Google group to get help.

You found a typo or other error in this guide? Please let us know by opening an issue in the
MapStruct GitHub repository , or, better yet, help the community and send a pull request for fixing
it!

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License.

1. Introduction

MapStruct is a Java annotation processor for the generation of type-safe bean mapping classes.

All you have to do is to define a mapper interface which declares any required mapping methods.
During compilation, MapStruct will generate an implementation of this interface. This
implementation uses plain Java method invocations for mapping between source and target
objects, i.e. no reflection or similar.

Compared to writing mapping code from hand, MapStruct saves time by generating code which is
tedious and error-prone to write. Following a convention over configuration approach, MapStruct
uses sensible defaults but steps out of your way when it comes to configuring or implementing
special behavior.

Compared to dynamic mapping frameworks, MapStruct offers the following advantages:

¥ Fast execution by using plain method invocations instead of reflection

¥ Compile-time type safety: Only objects and attributes mapping to each other can be mapped, no
accidental mapping of an order entity into a customer DTO etc.

¥ Clear error-reports at build time, if
I mappings are incomplete (not all target properties are mapped)

! mappings are incorrect (cannot find a proper mapping method or type conversion)

2. Setup

MapStruct is a Java annotation processor based on JSR 269 and as such can be used within
command line builds (javac, Ant, Maven etc.) as well as from within your IDE.

It comprises the following artifacts:

¥ org.mapstruct:mapstruct : contains the required annotations suchas @Mapping

¥ org.mapstruct:mapstruct-processor : contains the annotation processor which generates mapper
implementations

2.1. Apache Maven

For Maven based projects add the following to your POM file in order to use MapStruct:

https://groups.google.com/forum/?fromgroups#!forum/mapstruct-users
https://github.com/mapstruct/mapstruct
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://docs.oracle.com/javase/6/docs/technotes/guides/apt/index.html
http://www.jcp.org/en/jsr/detail?id=269

Example 1. Maven configuration

<properties>
E <org.mapstruct.version> 1.4.2.Final </org.mapstruct.version>
</properties>

<dependencies>

<dependency>
<groupld>org.mapstruct </groupld>
<artifactld> mapstruct</artifactld>
<version>${org.mapstruct.version} </version>

</dependency>

</dependencies>

[T M M My mp

<build>
E <plugins>
<plugin>
<groupld>org.apache.maven.plugins </groupld>
<artifactld> maven-compiler-plugin </artifactld>
<version>3.8.1 </version>
<configuration>
<source>1.8</source>
<target> 1.8 </target>
<annotationProcessorPaths>
<path>
<groupld>org.mapstruct </groupld>
<artifactld> mapstruct-processor </artifactld>
<version>${org.mapstruct.version} </version>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
E </plugins>
</build>

If you are working with the Eclipse IDE, make sure to have a current version of the
MZ2E plug-in . When importing a Maven project configured as shown above, it will
set up the MapStruct annotation processor so it runs right in the IDE, whenever
you save a mapper type. Neat, isnOt it?

To double check that everything is working as expected, go to your projectOs
properties and select "Java Compiler" " "Annotation Processing" " "Factory Path".
The MapStruct processor JAR should be listed and enabled there. Any processor
options configured via the compiler plug-in (see below) should be listed under
"Java Compiler" " "Annotation Processing".

If the processor is not kicking in, check that the configuration of annotation
processors through M2E is enabled. To do so, go to "Preferences" " "Maven" "
"Annotation Processing” and select “"Automatically configure JDT APT".
Alternatively, specify the following in the properties section of your POM file:
<mZ2e.apt.activation>jdt_apt</m2e.apt.activation>

Also make sure that your project is using Java 1.8 or later (project properties "
"Java Compiler* " "Compile Compliance Level"). It will not work with older
versions.

2.2. Gradle

Add the following to your Gradle build file in order to enable MapStruct:

Example 2. Gradle configuration

plugins {
E ..
E id "com.diffplug.eclipse.apt " version "3.26.0" // Only for Eclipse

}

dependencies {

E ..

E implementation "org.mapstruct:mapstruct: $1.4.2.Final "

E annotationProcessor "org.mapstruct:mapstruct-processor: $1.4.2.Final "
E //If you are using mapstruct in test code

E testAnnotationProcessor "org.mapstruct:mapstruct-processor: $1.4.2.Final
}

You can find a complete example in the mapstruct-examples project on GitHub.

http://www.eclipse.org/m2e/
https://github.com/mapstruct/mapstruct-examples/tree/master/mapstruct-on-gradle

2.3. Apache Ant

Add the javac task configured as follows to your build.xml file in order to enable MapStruct in your
Ant-based project. Adjust the paths as required for your project layout.

Example 3. Ant configuration

—_— .

<

avac
E srcdir = src/main/java "
E destdir ='target/classes
E classpath =" path/to/mapstruct-1.4.2.Final.jar ">
E <compilerarg line ='-processorpath path/to/mapstruct-processor-1.4.2.Final.jar
" s
E <compilerarg line ="'-s target/generated-sources "/>
</javac>

You can find a complete example in the mapstruct-examples project on GitHub.

2.4. Configuration options
The MapStruct code generator can be configured using annotation processor options

When invoking javac directly, these options are passed to the compiler in the form -Akey=value.
When using MapStruct via Maven, any processor options can be passed using an options element
within the configuration of the Maven processor plug-in like this:

https://github.com/mapstruct/mapstruct-examples/tree/master/mapstruct-on-ant

Example 4. Maven configuration

<plugin>
<groupld>org.apache.maven.plugins </groupld>
<artifactld> maven-compiler-plugin </artifactld>
<version>3.5.1 </version>
<configuration>
<source>1.8</source>
<target> 1.8</target>
<annotationProcessorPaths>
<path>
<groupld>org.mapstruct </groupld>
<artifactld> mapstruct-processor </artifactld>
<version>${org.mapstruct.version} </version>
</path>
</annotationProcessorPaths>
<!I-- due to problem in maven-compiler-plugin, for verbose mode add
howWarnings -->
<showWarningstrue </showWarnings>
<compilerArgs>
<arg>
-Amapstruct.suppressGeneratorTimestamp=true
</arg>
<arg>
-Amapstruct.suppressGeneratorVersioninfoComment=true
</arg>
<al’g>
-Amapstruct.verbose=true
</arg>
</compilerArgs>
</configuration>
</plugin>

M e M T > T T T T T T T M 2 T M Ty M T T T T T Ty e oy I m

Example 5. Gradle configuration

compileJava {

E options . compilerArgs += [
-Amapstruct.suppressGeneratorTimestamp=true' ,
-Amapstruct.suppressGeneratorVersioninfoComment=true’
-Amapstruct.verbose=true '

=7 [T [T [T [T [T

The following options exist:

Table 1. MapStruct processor options

Option Purpose Default
mapstruct. . If set to true , the creation of a time stamp in the ~ false
ts:np;pressGeneratommes @Generate@nnotation in the generated mapper
P classes is suppressed.
mapstruct.verbose If setto true , MapStruct in which MapStruct logs ~ false
its major decisions. Note, at the moment of
writing in Maven, also showWarningseeds to be
added due to a problem in the maven-compiler-
plugin configuration.
mapstruct. If set to true, the creation of the commentfalse

suppressGeneratorVersi

attribute in the @Generatedannotation in the
oninfoComment

generated mapper classes is suppressed. The
comment contains information about the
version of MapStruct and about the compiler
used for the annotation processing.

mapstruct.defaultCompo The name of the component model (see default
nentModel Retrieving a mapper) based on which mappers

should be generated.
Supported values are:

¥ default : the mapper uses no component
model, instances are typically retrieved via
Mappers#getMapper(Class)

¥ cdi: the generated mapper is an application-
scoped CDI bean and can be retrieved via
@Inject

¥ spring : the generated mapper is a singleton-
scoped Spring bean and can be retrieved via
@Autowired

¥ jsr330 : the generated mapper is annotated
with {@code @Named} and can be retrieved
via @Inject, e.g. using Spring

If a component model is given for a specific
mapper via @Mapper#componentModelthe value
from the annotation takes precedence.

Option Purpose Default

mapstruct.defaultiniec The type of the injection in mapper via field
tionStrategy parameter uses. This is only used on annotated

based component models such as CDI, Spring

and JSR 330.

Supported values are:

¥ field : dependencies will be injected in fields

¥ constructor : will be generated constructor.
Dependencies will be injected via
constructor.

When CDI componentModebl default constructor
will also be generated. If a injection strategy is
given for a specific mapper via
@Mapper#injectionStrategy() , the value from the
annotation takes precedence over the option.

mapstruct.unmappedTarg The default reporting policy to be applied in WARN
etPolicy case an attribute of the target object of a

mapping method is not populated with a source

value.

Supported values are:
¥ ERRORany unmapped target property will

cause the mapping code generation to fail

¥ WARNany unmapped target property will
cause a warning at build time

¥ IGNORE unmapped target properties are
ignored

If a policy is given for a specific mapper via
@Mapper#unmappedTargetPolicy(the value from
the annotation takes precedence.

2.5. Using MapStruct on Java 9
MapStruct can be used with Java 9 (JPMS), support for it is experimental.

A core theme of Java 9 is the modularization of the JDK. One effect of this is that a specific module
needs to be enabled for a project in order to use the javax.annotation.Generated annotation.
@Generateds added by MapStruct to generated mapper classes to tag them as generated code,
stating the date of generation, the generator version etc.

To allow usage of the @Generate@nnotation the module java.xml.ws.annotation must be enabled.
When using Maven, this can be done like this:

export MAVEN_OPTS="--add-modules java.xml.ws.annotation"

If the @Generate@nnotation is not available, MapStruct will detect this situation and not add it to
generated mappers.

In Java 9 java.annotation.processing.Generated was added (part of the
. java.compiler module), if this annotation is available then it will be used.

3. Defining a mapper

In this section youOll learn how to define a bean mapper with MapStruct and which options you
have to do so.

3.1. Basic mappings

To create a mapper simply define a Java interface with the required mapping method(s) and
annotate it with the org.mapstruct.Mapper annotation:

Example 6. Java interface to define a mapper

public interface CarMapper{

E (source = "make&, target = "manufacturer™)

E (source = "numberOfSeats, target = "seatCount")
E CarDto carToCarDtq Car car);

E (source = "name, target = "fullName")

E PersonDto personToPersonDt¢Person person);

}

The @Mappeannotation causes the MapStruct code generator to create an implementation of the
CarMappeinterface during build-time.

In the generated method implementations all readable properties from the source type (e.g. Car)
will be copied into the corresponding property in the target type (e.qg. CarDto):

¥ When a property has the same name as its target entity counterpart, it will be mapped
implicitly.

¥ When a property has a different name in the target entity, its name can be specified via the
@Mappingnnotation.

10

The property name as defined in the JavaBeans specification must be specified in
I the @Mappingnnotation, e.g. seatCount for a property with the accessor methods
getSeatCount() and setSeatCount() .

By means of the @BeanMapping(ignoreByDefault = true) the default behavior will be
explicit mapping , meaning that all mappings have to be specified by means of the
@Mappingnd no warnings will be issued on missing target properties.

Fluent setters are also supported. Fluent setters are setters that return the same
type as the type being modified.

E.g.

public Builder seatCount(int seatCount) {
E this.seatCount = seatCount;
E return this;

}

To get a better understanding of what MapStruct does have a look at the following implementation
of the carToCarDto() method as generated by MapStruct:

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

Example 7. Code generated by MapStruct

/| GENERATED CODE
public class CarMapperimplimplements CarMapper{

T T [Ty [T [y

[T > [T [T > e e mp mp mp mp m

T [T

[T [T [T [T

[T [T [T [T

T

m m»

~ [T >

public CarDto carToCarDtq Car car) {

if (car ==null) {
return null ;

}

CarDto carDto = new CarDtq() ;

if (car.getFeatures() !'= null) {
carDto. setFeatures (new ArrayList <String >(car. getFeatures()));
}
carDto. setManufacturer (car. getMakg));
carDto. setSeatCount(car. getNumberOfSeatf));
carDto. setDriver (personToPersonDt¢ car. getDriver ()));
carDto. setPrice (String . valueOf(car. getPrice ()));
if (car.getCategory() '= null) {
carDto. setCategory(car. getCategory().toString ());

}
carDto. setEngine(engineToEngineDtq car. getEngine()));

return carDto;

public PersonDto personToPersonDt¢Person person) {

...

private EngineDto engineToEngineDt@ Engine engine) {

if (engine ==null) {
return null ;

}

EngineDto engineDto = new EngineDtq() ;

engineDto. setHorsePowe(engine. getHorsePowet)) ;
engineDto. setFuel (engine. getFuel ());

return engineDto;

The general philosophy of MapStruct is to generate code which looks as much as possible as if you
had written it yourself from hand. In particular this means that the values are copied from source

12

to target by plain getter/setter invocations instead of reflection or similar.

As the example shows the generated code takes into account any name mappings specified via
@Mappindf the type of a mapped attribute is different in source and target entity, MapStruct will

either apply an automatic conversion (as e.g. for the price property, see also Implicit type
conversions) or optionally invoke / create another mapping method (as e.g. for the driver / engine
property, see also Mapping object references). MapStruct will only create a new mapping method if

and only if the source and target property are properties of a Bean and they themselves are Beans

or simple properties. i.e. they are not Collection or Maptype properties.

Collection-typed attributes with the same element type will be copied by creating a new instance of
the target collection type containing the elements from the source property. For collection-typed
attributes with different element types each element will be mapped individually and added to the
target collection (see Mapping collections).

MapStruct takes all public properties of the source and target types into account. This includes
properties declared on super-types.

3.2. Mapping Composition (experimental)

MapStruct supports the use of meta annotations. The @Mappin@nnotation supports now @Target
with ElementType#ANNOTATION_TTYRédition to ElementType#METHQORIs allows @Mappintp be used
on other (user defined) annotations for re-use purposes. For example:

(RetentionPolicy . CLASS

(target = "id", ignore = true)
(darget = "creationDate ", expression = "java(new java.util.Date()) ")
(darget = "namé, source = "groupNamg

public ToEntity { }

Can be used to characterise an Entity without the need to have a common base type. For instance,
ShelveEntity and BoxEntity do not share a common base type in the StorageMapperbelow.

13

public interface StorageMapper{

E StorageMapperINSTANCE MappersgetMappef StorageMapperclass);
E
E (otarget = "weightLimit ", source = "maxWeigHt)
E ShelveEntity magShelveDto source);
E
E (otarget = "label ", source = "designation ")
E BoxEntity magBoxDto source) ;
}
Still, they do have some properties in common. The @ToEntity assumes both target beans

ShelveEntity and BoxEntity have properties: "id" , "creationDate” and "name" It furthermore
assumes that the source beans ShelveDto and BoxDto always have a property "groupName! This
concept is also known as "duck-typing". In other words, if it quacks like duck, walks like a duck its
probably a duck.

This feature is still experimental. Error messages are not mature yet: the method on which the
problem occurs is displayed, as well as the concerned values in the @Mappingnnotation. However,
the composition aspect is not visible. The messages are "as if" the @Mapping/iould be present on the
concerned method directly. Therefore, the user should use this feature with care, especially when
uncertain when a property is always present.

A more typesafe (but also more verbose) way would be to define base classes / interfaces on the
target bean and the source bean and use @InheritConfiguration to achieve the same result (see
Mapping configuration inheritance).

3.3. Adding custom methods to mappers

In some cases it can be required to manually implement a specific mapping from one type to
another which canOt be generated by MapStruct. One way to handle this is to implement the custom
method on another class which then is used by mappers generated by MapStruct (see Invoking
other mappers).

Alternatively, when using Java 8 or later, you can implement custom methods directly in a mapper
interface as default methods. The generated code will invoke the default methods if the argument
and return types match.

As an example letOs assume the mapping from Personto PersonDtorequires some special logic which
canOt be generated by MapStruct. You could then define the mapper from the previous example like
this:

14

Example 8. Mapper which defines a custom mapping with a default method

public interface CarMapper{

I? @..)

E ...

E CarDto carToCarDtq Car car);

E default PersonDto personToPersonDt¢Person person) {
E //hand-written mapping logic

E)}

}

The class generated by MapStruct implements the method carToCarDto(). The generated code in
carToCarDto() will invoke the manually implemented personToPersonDto() method when mapping
the driver attribute.

A mapper could also be defined in the form of an abstract class instead of an interface and
implement the custom methods directly in the mapper class. In this case MapStruct will generate an
extension of the abstract class with implementations of all abstract methods. An advantage of this
approach over declaring default methods is that additional fields could be declared in the mapper
class.

The previous example where the mapping from Person to PersonDto requires some special logic
could then be defined like this:

Example 9. Mapper defined by an abstract class

public abstract class CarMapper{

I§ @..)

E ...

E public abstract CarDto carToCarDtq Car car);

E public PersonDto personToPersonDt¢Person person) {
E //hand-written mapping logic

E }

}

MapStruct will generate a sub-class of CarMapperwith an implementation of the carToCarDto()
method as it is declared abstract. The generated code in carToCarDto() will invoke the manually
implemented personToPersonDto() method when mapping the driver attribute.

15

3.4. Mapping methods with several source parameters

MapStruct also supports mapping methods with several source parameters. This is useful e.g. in
order to combine several entities into one data transfer object. The following shows an example:

Example 10. Mapping method with several source parameters

public interface AddressMapper{

E (source = "person.description ", target = "description ")

E (source = "address.houseNd, target = "houseNumbé&)

E DeliveryAddressDto personAndAddressToDeliveryAddressDt¢Person person, Address
address) ;

}

The shown mapping method takes two source parameters and returns a combined target object. As
with single-parameter mapping methods properties are mapped by name.

In case several source objects define a property with the same name, the source parameter from
which to retrieve the property must be specified using the @Mappingnnotation as shown for the
description property in the example. An error will be raised when such an ambiguity is not
resolved. For properties which only exist once in the given source objects it is optional to specify

the source parameterOs name as it can be determined automatically.

Specifying the parameter in which the property resides is mandatory when using
the @Mappingnnotation.

Mapping methods with several source parameters will return null in case all the
I source parameters are null . Otherwise the target object will be instantiated and all

properties from the provided parameters will be propagated.

MapStruct also offers the possibility to directly refer to a source parameter.

Example 11. Mapping method directly referring to a source parameter

public interface AddressMapper{

E (source = "person.description ", target = "description ")

E (source = "hn", target = "houseNumbé&)

E DeliveryAddressDto personAndAddressToDeliveryAddressDt¢Person person, Integer
hn);

}

16

In this case the source parameter is directly mapped into the target as the example above

demonstrates. The parameter hn, a non bean type (in this case java.lang.Integer) is mapped to
houseNumber

3.5. Mapping nested bean properties to current target

If you donOt want explicitly name all properties from nested source bean, you can use . as target.
This will tell MapStruct to map every property from source bean to target object. The following
shows an example:

Example 12. use of "target this" annotation "."

E
Epublic interface CustomerMappe(
E (gtarget = "nameé, source = "record.name")
E (otarget =".", source = "record")
E (otarget =".", source = "account")
E Customer customerDtoToCustoméiCustomerDto customerDto) ;
B
The generated code will map every property from CustomerDto.record to Customerdirectly, without

need to manually name any of them. The same goes for ~ Customer.account.

When there are conflicts, these can be resolved by explicitely defining the mapping. For instance in
the example above. nameoccurs in CustomerDto.record and in CustomerDto.account The mapping
@Mapping(target = "name", source = "record.name") resolves this conflict.

This "target this" notation can be very useful when mapping hierarchical objects to flat objects and
vice versa (@InheritinverseConfiguration).

3.6. Updating existing bean instances

In some cases you need mappings which donOt create a new instance of the target type but instead
update an existing instance of that type. This sort of mapping can be realized by adding a
parameter for the target object and marking this parameter with @MappingTargetThe following
shows an example:

Example 13. Update method

public interface CarMapper{

E void updateCarFromDtoCarDto carDto, Car car);
}

17

The generated code of the updateCarFromDto() method will update the passed Car instance with the
properties from the given CarDto object. There may be only one parameter marked as mapping
target. Instead of void you may also set the methodOs return type to the type of the target parameter,
which will cause the generated implementation to update the passed mapping target and return it

as well. This allows for fluent invocations of mapping methods.

For CollectionMappingStrategy. ACCESSOR_ONCH¥llection- or map-typed properties of the target bean

to be updated will be cleared and then populated with the values from the corresponding source
collection or map. Otherwise, For CollectionMappingStrategy.ADDER_PREFERREDor
CollectionMappingStrategy. TARGET_IMMUTABIHe target will not be cleared and the values will be
populated immediately.

3.7. Mappings with direct field access

MapStruct also supports mappings of public fields that have no getters/setters. MapStruct will use
the fields as read/write accessor if it cannot find suitable getter/setter methods for the property.

A field is considered as a read accessor if it is public or public final . If a field is static it is not
considered as a read accessor.

A field is considered as a write accessor only if it is public . If a field is final and/or static it is not
considered as a write accessor.

Small example:

18

Example 14. Example classes for mapping

public class Customer{

E private Longid;

E private String name

E //getters and setter omitted for brevity
}

public class CustomerDto{

E public Longid;
E public String customerName

}

@Mapper
public interface CustomerMappef

E CustomerMappeiNSTANCE MappersgetMappe(CustomerMappeclass);
E @Mappir(source = "customerNanig target = "name)

E CustomertoCustomer CustomerDto customerDto) ;

E @ InheritinverseConfiguration

E CustomerDtofromCustomef Customer customer);

}

For the configuration from above, the generated mapper looks like:

19

Example 15. Generated mapper for example classes

/l GENERATED CODE
public class CustomerMapperimplimplements CustomerMappef

E

E public CustomertoCustomer CustomerDtocustomerDto) {
E ...

E customer. setld (customerDto.id);

E customer. setNamé customerDta customerName ;

E ...

E }

E

E public CustomerDtofromCustomef Customer customer) {
E ...

E customerDto id = customer. getld ();

E customerDto customerName= customer. getNameg) ;

E ...

E }

}

You can find the complete example in the mapstruct-examples-field-mapping project on GitHub.

3.8. Using builders

MapStruct also supports mapping of immutable types via builders. When performing a mapping
MapStruct checks if there is a builder for the type being mapped. This is done via the
BuilderProvider SPI. If a Builder exists for a certain type, then that builder will be used for the
mappings.

The default implementation of the ~ BuilderProvider assumes the following:

¥ The type has a parameterless public static builder creation method that returns a builder. So for
example Personhas a public static method that returns ~ PersonBuilder .

¥ The builder type has a parameterless public method (build method) that returns the type being
built. In our example PersonBuilder has a method returning Person

¥ In case there are multiple build methods, MapStruct will look for a method called build , if such
method exists then this would be used, otherwise a compilation error would be created.

¥ A specific build method can be defined by using @Builder within: @BeanMapping@ Mappeor
@MapperConfig

¥ In case there are multiple builder creation methods that satisfy the above conditions then a
MoreThanOneBuilderCreationMethodExceptiorwill be thrown from the DefaultBuilderProvider SPI.
In case of a MoreThanOneBuilderCreationMethodExceptionMapStruct will write a warning in the
compilation and not use any builder.

20

https://github.com/mapstruct/mapstruct-examples/tree/master/mapstruct-field-mapping

If such type is found then MapStruct will use that type to perform the mapping to (i.e. it will look
for setters into that type). To finish the mapping MapStruct generates code that will invoke the
build method of the builder.

Builder detection can be switched off by means of @Buildert#tdisableBuilder .

MapStruct will fall back on regular getters / setters in case builders are disabled.

The Object factories are also considered for the builder type. E.g. If an object
factory exists for our PersonBuilder then this factory would be used instead of the
builder creation method.

Example 16. Person with Builder example

public class Person {

mp

T T m»

T > m»

mp

mp

m > m» [mp

=~ [T [T [[mp

private final String name

protected Person(Person Builder builder) {
this . name= builder . name

}

public static Person Builder builder () {
return new Person Builder ();

}

public static class Builder {

private String name

public Builder naméString namég {

}

this . name= name
return this ;

public Person create () {

}

return newPerson this);

21

Example 17. Person Mapper definition

public interface PersonMapper{

E Person magPersonDto dto) ;

}

Example 18. Generated mapper with builder

/Il GENERATED CODE
public class PersonMapperimplimplements PersonMapper{

E public Person magPersonDto dto) {
E if (dto ==null) {
E return null ;
E }
Person Builder builder = Person builder ();
E builder . namé dto. getName)):
E return builder . create ();
E }
}

Supported builder frameworks:

¥ Lombok - It is required to have the Lombok classes in a separate module. See for more

information at rzwitserloot/lombok#1538 and to set up Lombok with MapStruct, refer to
Lombok .

¥ AutoValue

¥ Immutables - When Immutables are present on the annotation processor path then the
ImmutablesAccessorNamingStrategyand ImmutablesBuilderProvider would be used by default

¥ FreeBuilder - When FreeBuilder is present on the annotation processor path then the
FreeBuilderAccessorNamingStrategy would be used by default. When using FreeBuilder then the

JavaBean convention should be followed, otherwise MapStruct wonOt recognize the fluent
getters.

¥ It also works for custom builders (handwritten ones) if the implementation supports the

defined rules for the default BuilderProvider . Otherwise, you would need to write a custom
BuilderProvider

22

https://projectlombok.org/
https://github.com/rzwitserloot/lombok/issues/1538
https://github.com/google/auto/blob/master/value/userguide/index.md
https://immutables.github.io/
https://github.com/google/FreeBuilder

In case you want to disable using builders then you can use the

I NoOpBuilderProvider by creating a org.mapstruct.ap.spi.BuilderProvider file in the
. META-INF/services directory with org.mapstruct.ap.spi.NoOpBuilderProvider as itOs
content.

3.9. Using Constructors

MapStruct supports using constructors for mapping target types. When doing a mapping MapStruct
checks if there is a builder for the type being mapped. If there is no builder, then MapStruct looks
for a single accessible constructor. When there are multiple constructors then the following is done
to pick the one which should be used:

¥ If a constructor is annotated with an annotation named @Default (from any package, see Non-
shipped annotations) it will be used.

¥ If a single public constructor exists then it will be used to construct the object, and the other non
public constructors will be ignored.

¥ If a parameterless constructor exists then it will be used to construct the object, and the other
constructors will be ignored.

¥ If there are multiple eligible constructors then there will be a compilation error due to
ambiguous constructors. In order to break the ambiguity an annotation named @Default (from
any package, see Non-shipped annotations) can used.

23

Example 19. Deciding which constructor to use

public class Vehicle {
E protected Vehicle() { }

E // MapStruct will use this constructor, because it is a single public

constructor
E public Vehicle (String color) { }
}

public class Car {
E // MapStruct will use this constructor, because it is a parameterless empty
constructor

E public Car) {}

E public Car(String make String color) { }
}

public class Truck {

E public Truck() { }

E // MapStruct will use this constructor, because it is annotated with @Default
E @Default

E public Truck(String make String color) { }

}

public class Van{

E // There will be a compilation error when using this class because MapStruct
cannot pick a constructor

E public Var(String makg { }
E public Var(String make String color) { }
}

When using a constructor then the names of the parameters of the constructor will be used and
matched to the target properties. When the constructor has an annotation named
@ConstructorProperties (from any package, see Non-shipped annotations) then this annotation will
be used to get the names of the parameters.

When an object factory method or a method annotated with @ObjectFactoryexists,

| it will take precedence over any constructor defined in the target. The target object
constructor will not be used in that case.

24

Example 20. Person with constructor parameters

public class Person {

E private final String name

E private final String surname

E public Person(String name String surnam@ {
E this . name= name

E this . surname= surname

E }

}

Example 21. Person With Constructor Mapper definition

public interface PersonMapper{

E Person magPersonDto dto) ;

}

Example 22. Generated mapper with constructor

/[l GENERATED CODE
public class PersonMapperimplimplements PersonMapper{

E public Person magPersonDto dto) {
E if (dto ==null) {

E return null ;

E }

E String name

E String surname

E name= dto. getName);

E surname= dto. getSurnamg) ;

E Person person = new Person name surname);
E return person;

E }

}

25

4. Retrieving a mapper

4.1. The Mappers factory (no dependency injection)

When not wusing a DI framework, Mapper instances can be retrieved via the
org.mapstruct.factory.Mappers class. Just invoke the getMapper() method, passing the interface type
of the mapper to return:

Example 23. Using the Mappers factory

CarMappermapper= MappersgetMappef CarMapperclass);

By convention, a mapper interface should define a member called INSTANChich holds a single
instance of the mapper type:

Example 24. Declaring an instance of a mapper (interface)

public interface CarMapper{

E CarMapperINSTANCE MappersgetMappe(CarMapperclass);
E CarDto carToCarDtq Car car);
}

Example 25. Declaring an instance of a mapper (abstract class)

public abstract class CarMapper{

E public static final CarMapperINSTANCE MappersgetMappef CarMapperclass);
E CarDto carToCarDtq Car car);
}

This pattern makes it very easy for clients to use mapper objects without repeatedly instantiating
new instances:

26

Example 26. Accessing a mapper

Carcar =...;
CarDto dto = CarMapperINSTANCEarToCarDtd car);

Note that mappers generated by MapStruct are stateless and thread-safe and thus can safely be
accessed from several threads at the same time.

4.2. Using dependency injection

If youOre working with a dependency injection framework such as CDI (Contexts and Dependency
Injection for Java " EE) or the Spring Framework , it is recommended to obtain mapper objects via
dependency injection and not via the Mappersclass as described above. For that purpose you can
specify the component model which generated mapper classes should be based on either via
@Mapper#componentModelsing a processor option as described in - Configuration options

Currently there is support for CDI and Spring (the latter either via its custom annotations or using

the JSR 330 annotations). See Configuration options for the allowed values of the = componentModel
attribute which are the same as for the ~ mapstruct.defaultComponentModel processor option. In both
cases the required annotations will be added to the generated mapper implementations classes in

order to make the same subject to dependency injection. The following shows an example using

CDI:

Example 27. A mapper using the CDI component model

ccomponentModeE "cdi")
public interface CarMapper{

E CarDto carToCarDtq Car car);

}
The generated mapper implementation will be marked with the @ApplicationScopedannotation and
thus can be injected into fields, constructor arguments etc. using the @Inject annotation:

Example 28. Obtaining a mapper via dependency injection

private CarMappermapper

A mapper which uses other mapper classes (see Invoking other mappers) will obtain these mappers
using the configured component model. So if CarMapperfrom the previous example was using
another mapper, this other mapper would have to be an injectable CDI bean as well.

27

http://jcp.org/en/jsr/detail?id=346
http://www.springsource.org/spring-framework

4.3. Injection strategy

When using dependency injection , you can choose between field and constructor injection. This can
be done by either providing the injection strategy via @Mappar @MapperConfignnotation.

Example 29. Using constructor injection

ccomponentModekE "cdi", uses = EngineMapperclass, injectionStrategy =
InjectionStrategy . CONSTRUCTOR
public interface CarMapper{
E CarDto carToCarDtq Car car);

}

The generated mapper will inject all classes defined in the uses attribute. When
InjectionStrategy#CONSTRUCTOIR used, the constructor will have the appropriate annotation and
the fields wonOt. When InjectionStrategy#FIELD is used, the annotation is on the field itself. For now,
the default injection strategy is field injection, but it can be configured with Configuration options
It is recommended to use constructor injection to simplify testing.

| For abstract classes or decorators setter injection should be used.

5. Data type conversions

Not always a mapped attribute has the same type in the source and target objects. For instance an
attribute may be of type int in the source bean but of type Longin the target bean.

Another example are references to other objects which should be mapped to the corresponding
types in the target model. E.g. the class Car might have a property driver of the type Personwhich
needs to be converted into a PersonDtoobject when mapping a Car object.

In this section youOll learn how MapStruct deals with such data type conversions.

5.1. Implicit type conversions

MapStruct takes care of type conversions automatically in many cases. If for instance an attribute is

of type int in the source bean but of type String in the target bean, the generated code will
transparently perform a conversion by calling String#valueOf(int) and Integer#parselnt(String)
respectively.

Currently the following conversions are applied automatically:

¥ Between all Java primitive data types and their corresponding wrapper types, e.g. between int
and Integer , boolean and Boolean etc. The generated code is null aware, i.e. when converting a
wrapper type into the corresponding primitive type a null check will be performed.

¥ Between all Java primitive number types and the wrapper types, e.g. between int and long or

28

byte and Integer .

Converting from larger data types to smaller ones (e.g. from long to int) can cause

n a value or precision loss. The Mapperand MapperConfigannotations have a method
typeConversionPolicy to control warnings / errors. Due to backward compatibility
reasons the default value is 'ReportingPolicy.IGNORE".

¥ Between all Java primitive types (including their wrappers) and String , e.g. between int and
String or Booleanand String . A format string as understood by java.text.DecimalFormat can be
specified.

Example 30. Conversion from int to String

@Mapper
public interface CarMapper{

E @Mappir(source = "price ", numberFormat= "$#.00")
E CarDto carToCarDtq Car car);

E @IlterableMapping numberFormat= " $#.00")

E List <String > prices (List <Integer > prices);

}

¥ Between enuntypes and String .

¥ Between big number types (java.math.Biginteger , java.math.BigDecimal) and Java primitive
types (including their wrappers) as well as String. A format string as understood by
java.text.DecimalFormat can be specified.

Example 31. Conversion from BigDecimal to String

@Mapper
public interface CarMapper{

@Mappir(source = "powel', numberFormat= "#.##EQ")
CarDto carToCarDtd Car car);

m m»

—

¥ Between JAXBElement<Tand T, List<JAXBElement<T>and List<T>
¥ Between java.util.Calendar /java.util.Date and JAXBOXMLGregorianCalendar

¥ Between java.util.Date /XMLGregorianCalendarand String . A format string as understood by
java.text.SimpleDateFormat can be specified via the dateFormatoption as this:

29

Example 32. Conversion from Date to String

@Mapper
public interface CarMapper{

E @Mappir(source = "manufacturingDate", dateFormat = "dd.MM.yyyy)
E CarDto carToCarDtq Car car);

E @lterableMapping dateFormat = "dd.MM.yyyy)

E List <String > stringListToDateList (List <Date> dates);

}

¥ Between Jodas org.joda.time.DateTime , org.joda.time.LocalDateTime , org.joda.time.LocalDate
org.joda.time.LocalTime and String . A format string as understood by
java.text.SimpleDateFormat can be specified via the dateFormatoption (see above).

¥ Between Jodas org.joda.time.DateTime and javax.xml.datatype.XMLGregorianCalendar ,
java.util.Calendar

¥ Between Jodas org.joda.time.LocalDateTime org.joda.time.LocalDate and
javax.xml.datatype.XMLGregorianCalendar , java.util.Date

¥ Between java.time.LocalDate , java.time.LocalDateTime and
javax.xml.datatype.XMLGregorianCalendar .

¥ Between java.time.ZonedDateTime, java.time.LocalDateTime java.time.LocalDate ,
java.time.LocalTime from Java 8 Date-Time package and String . A format string as understood
by java.text.SimpleDateFormat can be specified via the dateFormatoption (see above).

¥ Between java.time.Instant , java.time.Duration , java.time.Period from Java 8 Date-Time
package and String using the parse method in each class to map from String and using toString
to map into String .

¥ Between java.time.ZonedDateTime from Java 8 Date-Time package and java.util.Date where,
when mapping a ZonedDateTimdérom a given Date, the system default timezone is used.

¥ Between java.time.LocalDateTime from Java 8 Date-Time package and java.uti.Date where
timezone UTC is used as the timezone.

¥ Between java.time.LocalDate from Java 8 Date-Time package and java.util.Date /java.sgl.Date
where timezone UTC is used as the timezone.

¥ Between java.time.lnstant from Java 8 Date-Time package and java.util.Date

¥ Between java.time.ZonedDateTime from Java 8 Date-Time package and java.util.Calendar
¥ Between java.sgl.Date and java.util.Date

¥ Between java.sgl.Time and java.util.Date

¥ Between java.sgl.Timestamp and java.util.Date

¥ When converting from a String , omitting Mapping#dateFormat it leads to usage of the default
pattern and date format symbols for the default locale. An exception to this rule is
XmlGregorianCalendar which results in parsing the String according to XML Schema 1.0 Part 2,

30

http://www.w3.org/TR/xmlschema-2/#dateTime

Section 3.2.7-14.1, Lexical Representation
¥ Between java.util.Currency and String .

! When converting from a String , the value needs to be a valid 1S0-4217 alphabetic code
otherwise an lllegalArgumentException is thrown

5.2. Mapping object references

Typically an object has not only primitive attributes but also references other objects. E.g. the Car
class could contain a reference to a Person object (representing the carOs driver) which should be
mapped to a PersonDtoobject referenced by the CarDtoclass.

In this case just define a mapping method for the referenced object type as well:

Example 33. Mapper with one mapping method using another

public interface CarMapper{

E CarDto carToCarDtq Car car);
E PersonDto personToPersonDt¢Person person);
}

The generated code for the carToCarDto() method will invoke the personToPersonDto() method for
mapping the driver attribute, while the generated implementation for personToPersonDto()
performs the mapping of person objects.

That way it is possible to map arbitrary deep object graphs. When mapping from entities into data
transfer objects it is often useful to cut references to other entities at a certain point. To do so,
implement a custom mapping method (see the next section) which e.g. maps a referenced entity to
its id in the target object.

When generating the implementation of a mapping method, MapStruct will apply the following
routine for each attribute pair in the source and target object:

1. If source and target attribute have the same type, the value will be simply copied direct from
source to target. If the attribute is a collection (e.g. a List) a copy of the collection will be set into
the target attribute.

2. If source and target attribute type differ, check whether there is another mapping method
which has the type of the source attribute as parameter type and the type of the target attribute
as return type. If such a method exists it will be invoked in the generated mapping
implementation.

3. If no such method exists MapStruct will look whether a built-in conversion for the source and
target type of the attribute exists. If this is the case, the generated mapping code will apply this
conversion.

31

http://www.w3.org/TR/xmlschema-2/#dateTime
https://en.wikipedia.org/wiki/ISO_4217

4. If no such method exists MapStruct will apply complex conversions:

a. mapping method, the result mapped by mapping method, like this: target = methodl(
method2(source))

b. built-in conversion, the result mapped by mapping method, like this: target = method(
conversion(source))

¢. mapping method, the result mapped by build-in conversion, like this: target = conversion(
method(source))

5. If no such method was found MapStruct will try to generate an automatic sub-mapping method
that will do the mapping between the source and target attributes.

6. If MapStruct could not create a name based mapping method an error will be raised at build
time, indicating the non-mappable attribute and its path.

A mapping control (MappingControl) can be defined on all levels (@MapperConfig @Mapper
@BeanMapping@@Mapping the latter taking precedence over the former. For example: @Mapper(
mappingControl = NoComplexMapping.class) takes precedence over @MapperConfig(mappingControl =
DeepClone.class) . @lterableMapping and @MapMappingork similar as @MappingMappingControl is
experimental from MapStruct 1.4. MappingControl has an enum that corresponds to the first 4

options above: MappingControl.Use#DIRECT MappingControl.Use#MAPPING_METHOD
MappingControl.Use#BUILT_IN_CONVERSHDN MappingControl.Use#COMPLEX_ MAPRKeGpresence of
which allows the user to switch on a option. The absence of an enum switches off a mapping
option. Default they are all present enabling all mapping options.

In order to stop MapStruct from generating automatic sub-mapping methods as in
5. above, one can use @Mapper(disableSubMappingMethodsGeneration = true).

The user has full control over the mapping by means of meta annotations. Some
handy ones have been defined such as @DeepClonavhich only allows direct
mappings. The result: if source and target type are the same, MapStruct will make

a deep clone of the source. Sub-mappings-methods have to be allowed (default

option).
I During the generation of automatic sub-mapping methods Shared configurations
. will not be taken into consideration, yet. Follow issue #1086 for more information.

Constructor properties of the target object are also considered as target properties.
You can read more about thatin Using Constructors

5.3. Controlling nested bean mappings

As explained above, MapStruct will generate a method based on the name of the source and target
property. Unfortunately, in many occasions these names do not match.

The 0.0 notation in an@Mappingource or target type can be used to control how properties should be
mapped when names do not match. There is an elaborate example in our examples repository to
explain how this problem can be overcome.

32

https://github.com/mapstruct/mapstruct/issues/1086
https://github.com/mapstruct/mapstruct-examples/tree/master/mapstruct-nested-bean-mappings

In the simplest scenario thereOs a property on a nested level that needs to be corrected. Take for
instance a property fish which has an identical name in FishTankDtoand FishTank. For this property
MapStruct automatically generates a mapping: FishDto fishToFishDto(Fish fish) . MapStruct cannot
possibly be aware of the deviating properties kind and type. Therefore this can be addressed in a
mapping rule: @Mapping(target="fish.kind", source="fish.type") . This tells MapStruct to deviate
from looking for a name kind at this level and map itto type.

Example 34. Mapper controlling nested beans mappings |

@Mapper
public interface FishTankMapper{

E @Mappir(dgarget = "fish.kind ", source = "fish.type ")

E @Mappir(darget = "fish.name", ignore = true)

E @Mappir(darget = "ornament, source = "interior.ornament ")

E @Mappir(darget = "material.materialType ", source = "material ")
E @Mappir(darget = "quality.report.organisation.name ", source =

"quality.report.organisationName ")
E FishTankDto mag FishTank source);
}

The same constructs can be used to ignore certain properties at a nesting level, as is demonstrated
in the second @Mappingule.

MapStruct can even be used to Ocherry pickO properties when source and target do not share the
same nesting level (the same number of properties). This can be done in the source B and in the
target type. This is demonstrated in the next 2 rules: @Mapping(target="ornament",
source="interior.ornament”) and @Mapping(target="material.materialType", source="material")

The latter can even be done when mappings first share a common base. For example: all properties

that share the same name of Quality are mapped to QualityDto . Likewise, all properties of Report
are mapped to ReportDto, with one exception: organisation in OrganisationDto is left empty (since
there is no organization at the source level). Only the nameis populated with the organisationName

from Report. This is demonstrated in @Mapping(target="quality.report.organisation.name",
source="quality.report.organisationName")

Coming back to the original example: what if kind and type would be beans themselves? In that case
MapStruct would again generate a method continuing to map. Such is demonstrated in the next
example:

33

Example 35. Mapper controlling nested beans mappings Il

public interface FishTankMapperWithDocumert

E (darget = "fish.kind ", source = "fish.type ")
E (darget = "fish.name", expression = "java(\" Jaws")")
E (target = "plant", ignore = true)
E (darget = "ornament’, ignore = true)
E (target = "material ", ignore = true)
E (darget = "quality.document ", source = "quality.report ")
E (darget = "quality.document.organisation.name ", constant = "Noldealnc"
)
E FishTankWithNestedDocumentDtanag FishTank source);
}
Note what happens in @Mapping(target="quality.document", source="quality.report") . DocumentDto

does not exist as such on the target side. It is mapped from Report. MapStruct continues to generate
mapping code here. That mapping itself can be guided towards another name. This even works for
constants and expression. Which is shown in the final example:
@Mapping(target="quality.document.organisation.name", constant="Noldealnc")

MapStruct will perform a null check on each nested property in the source.

Instead of configuring everything via the parent method we encourage users to
explicitly write their own nested methods. This puts the configuration of the

I nested mapping into one place (method) where it can be reused from several
methods in the upper level, instead of re-configuring the same things on all of
those upper methods.

In some cases the ReportingPolicy that is going to be used for the generated nested
method would be IGNORHEhis means that it is possible for MapStruct not to report
unmapped target properties in nested mappings.

5.4. Invoking custom mapping method

Sometimes mappings are not straightforward and some fields require custom logic.

The example below demonstrates how the properties length , width and height in FishTank can be
mapped to the VolumeDtobean, which is a member of FishTankWithVolumeDtoVolumeDtocontains the
properties volume and description . Custom logic is achieved by defining a method which takes
FishTank instance as a parameter and returns a VolumeDto MapStruct will take the entire parameter
source and generate code to call the custom method mapVolumin order to map the FishTank object to
the target property volume

34

The remainder of the fields could be mapped the regular way: using mappings defined defined by
means of @Mappingnnotations.

Example 36. Manually implemented mapping method

public class FishTank {

= [T> [Tp T M Ty mp

Fish fish ;
String material ;
Quality quality ;
int length ;
int width;
int height ;

public class FishTankWithVolumeDto{

=~ [T> [Tp [T [Tp

FishDto fish ;
MaterialDto material ;
QualityDto quality ;
VolumeDtovolume

public class VolumeDto{

E
E
}

int volume
String description ;

public abstract class FishTankMapperWithVolumé

T [T T Th [T

> [T [Tp T> [Tp T

(darget = "fish.kind ", source = "source.fish.type ")

(darget = "material.materialType ", source = "source.material ")
(darget = "quality.document ", source = "source.quality.report ")
(darget = "volume', source = "source")

abstract FishTankWithVolumeDtomagFishTank source);

VolumeDtomapVolun{é-ishTank source) {

int volume = source. length * source. width * source. height ;

String desc = volume < 100 ? "Small" : "Large";

return new VolumeDt¢volume desc);

Note the @Mappingnnotation where source field is equal to "source" , indicating the parameter name
source itself in the method map(FishTank source) instead of a (target) property in FishTank

5.5. Invoking other mappers

In addition to methods defined on the same mapper type MapStruct can also invoke mapping

35

methods defined in other classes, be it mappers generated by MapStruct or hand-written mapping
methods. This can be useful to structure your mapping code in several classes (e.g. with one
mapper type per application module) or if you want to provide custom mapping logic which canOt
be generated by MapStruct.

For instance the Car class might contain an attribute manufacturingDate while the corresponding
DTO attribute is of type String. In order to map this attribute, you could implement a mapper class
like this:

Example 37. Manually implemented mapper class

public class DateMapper{

E public String asString (Date date) {

E return date != null ? new SimpleDateFormaf "yyyy-MM-dd)
E .format(date) : null ;

E }

E public Date asDatg String date) {

E try {

E return date != null ? new SimpleDateForma "yyyy-MM-dd)
E .parse(date) : null ;

E }

E catch (ParseException e) {

E throw new RuntimeException(e);

E }

E }

}

In the @Mappeannotation at the CarMappeinterface reference the DateMapperlass like this:

Example 38. Referencing another mapper class

tuses=DateMapperclass)
public interface CarMapper{

E CarDto carToCarDtq Car car);
}

When generating code for the implementation of the carToCarDto() method, MapStruct will look for
a method which maps a Date object into a String, find it on the DateMapperclass and generate an
invocation of asString() for mapping the manufacturingDate attribute.

Generated mappers retrieve referenced mappers using the component model configured for them.
If e.g. CDI was used as component model for CarMapperDateMappemwould have to be a CDI bean as
well. When using the default component model, any hand-written mapper classes to be referenced

36

by MapStruct generated mappers must declare a public no-args constructor in order to be
instantiable.

5.6. Passing the mapping target type to custom
mappers

When having a custom mapper hooked into the generated mapper with @Mapper#uses() an
additional parameter of type Class (or a super-type of it) can be defined in the custom mapping
method in order to perform general mapping tasks for specific target object types. That attribute

must be annotated with ~@TargetTypdor MapStruct to generate calls that pass the Class instance
representing the corresponding property type of the target bean.

For instance, the CarDtocould have a property ownerof type Reference that contains the primary key
of a Person entity. You could now create a generic custom mapper that resolves any Reference
objects to their corresponding managed JPA entity instances.

Example 39. Mapping method expecting mapping target type as parameter

/[CDI component model
public class ReferenceMapper{

T TP

private EntityManager entityManager ;

E public <T extends BaseEntity > T resolve (Reference reference ,
Class<T> entityClass) {

E return reference != null ? entityManager.find (entityClass , reference
.getPk()) : null ;

E }

E public Reference toReference(BaseEntity entity) {

E return entity != null ? newReference(entity .getPk()) : null ;

E }

}

ccomponentModekE "cdi", uses = ReferenceMapperclass)
public interface CarMapper{

E Car carDtoToCal CarDto carDto);
}

MapStruct will then generate something like this:

37

Example 40. Generated code

IIGENERATED CODE

public class CarMapperimplimplements CarMapper{

E

E private ReferenceMapperreferenceMapper,
E

E public Car carDtoToCaf CarDto carDto) {
E if (carDto ==null) {

E return null ;

E }

E Car car = newCar();

E car. setOwne(referenceMapper. resolve (carDto. getOwnef), Ownerclass));
E ...

E return car;

E }

}

5.7. Passing context or state objects to custom methods

Additional context or state information can be passed through generated mapping methods to
custom methods with @ Contexjparameters. Such parameters are passed to other mapping methods,
@ObjectFactory methods (see Object factories) or @BeforeMapping @AfterMapping methods (see
Mapping customization with before-mapping and after-mapping methods) when applicable and
can thus be used in custom code.

@Contextparameters are searched for @ObjectFactory methods, which are called on the provided
context parameter value if applicable.

@Contexiparameters are also searched for @BeforeMapping @ AfterMappingmethods, which are called
on the provided context parameter value if applicable.

Note: no null checks are performed before calling before/after mapping methods on context
parameters. The caller needs to make sure that null is not passed in that case.

For generated code to call a method that is declared with @Contextparameters, the declaration of
the mapping method being generated needs to contain at least those (or assignable) @Context
parameters as well. The generated code will not create new instances of missing @Context

parameters nor will it pass a literal null instead.

38

Example 41. Using @Contexparameters for passing data down to hand-written property mapping methods

public abstract CarDto toCar(Car car, Locale translationLocale);

protected OwnerManualDtdranslateOwnerManual(OwnerManuabwnerManual
Locale locale) {

E // manually implemented logic to translate the OwnerManual with the given
Locale

}

MapStruct will then generate something like this:

Example 42. Generated code

/IGENERATED CODE
public CarDto toCar(Car car, Locale translationLocale) {

E if (car ==null) {

E return null ;

E }

E CarDto carDto = new CarDtq();

E carDto. setOwnerManudl translateOwnerManual(car. getOwnerManug)),
translationLocale);
E // more generated mapping code

E return carDto;

}

5.8. Mapping method resolution

When mapping a property from one type to another, MapStruct looks for the most specific method
which maps the source type into the target type. The method may either be declared on the same

mapper interface or on another mapper which is registered via @Mapper#uses()The same applies

for factory methods (see Object factories).

The algorithm for finding a mapping or factory method resembles JavaOs method resolution
algorithm as much as possible. In particular, methods with a more specific source type will take
precedence (e.g. if there are two methods, one which maps the searched source type, and another
one which maps a super-type of the same). In case more than one most-specific method is found, an
error will be raised.

39

When working with JAXB, e.g. when converting a String to a corresponding
JAXBElement<String> MapStruct will take the scope and name attributes of

l @XmlElementDechnnotations into account when looking for a mapping method.
This makes sure that the created JAXBElemeninstances will have the right QNAME
value. You can find a test which maps JAXB objects here.

5.9. Mapping method selection based on qualifiers

In many occasions one requires mapping methods with the same method signature (apart from the
name) that have different behavior. MapStruct has a handy mechanism to deal with such
situations: @Qualifier (org.mapstruct.Qualifier). A OqualifierO is a custom annotation that the user
can write, Ostick ontoO a mapping method which is included as used mapper and can be referred to

in a bean property mapping, iterable mapping or map mapping. Multiple qualifiers can be Ostuck
onto® a method and mapping.

So, letOs say there is a hand-written method to map titles with a String return type and String
argument amongst many other referenced mappers with the same String return type - String
argument signature:

Example 43. Several mapping methods with identical source and target types

public class Titles {

E public String translateTitteEG (String title) {
E /[some mapping logic

E }

E public String translateTitleGE (String title) {
E /l some mapping logic

E }

}

And a mapper using this handwritten mapper, in which source and target have a property ‘title’
that should be mapped:

Example 44. Mapper causing an ambiguous mapping method error

Eruses = Titles .class)
public interface MovieMapper{

E GermanReleasdoGermalfi OriginalRelease movies);

Without the use of qualifiers, this would result in an ambiguous mapping method error, because 2

40

https://github.com/mapstruct/mapstruct/blob/1.4.2.Final/integrationtest/src/test/resources/jaxbTest/src/test/java/org/mapstruct/itest/jaxb/JaxbBasedMapperTest.java

qualifying methods are found (translateTitleEG , translateTitleGE) and MapStruct would not have a
hint which one to choose.

Enter the qualifier approach:

Example 45. Declaring a qualifier type

import org.mapstruct.Qualifier

@Qualifier
@Targe(ElementType TYPE
@Retentior(RetentionPolicy . CLASS
public @interface TitleTranslator {

}

And, some qualifiers to indicate which translator to use to map from source language to target
language:

Example 46. Declaring qualifier types for mapping methods

import org.mapstruct.Qualifier ;

@Qualifier

@Targe(ElementType METHQD
@Retentior(RetentionPolicy . CLASS
public @interface EnglishToGerman{

}

import org.mapstruct.Qualifier ;

@Qualifier

@Targe(ElementType METH®D
@Retentior(RetentionPolicy . CLASS
public @interface GermanToEnglish{

}

Please take note of the target TitleTranslator on type level, EnglishToGermanGermanToEnglishon
method level!

Then, using the qualifiers, the mapping could look like this:

41

Example 47. Mapper using qualifiers

Eruses = Titles .class)
public interface MovieMapper{

E (otarget = "title ", qualifiedBy = { TitleTranslator .class,
EnglishToGermanclass })
E GermanReleasd¢oGermalf OriginalRelease movies);

Example 48. Custom mapper qualifying the methods it provides

public class Titles {

public String translateTitleEG (String title) {
/l some mapping logic

m e m» [mp

public String translateTitleGE (String title) {
/l some mapping logic

=~ [T> [Tp > [Tp

n Please make sure the used retention policy equals retention policy CLASS
(@Retention(RetentionPolicy.CLASS)).

n A class / method annotated with a qualifier will not qualify anymore for mappings
that do not have the qualifiedBy element.

I The same mechanism is also present on bean mappings: @BeanMapping#qualifiedBy
. it selects the factory method marked with the indicated qualifier.

In many occasions, declaring a new annotation to aid the selection process can be too much for
what you try to achieve. For those situations, MapStruct has the @Nameuhnotation. This annotation
is a pre-defined qualifier (annotated with @Qualifier itself) and can be used to name a Mapper or,
more directly a mapping method by means of its value. The same example above would look like:

42

Example 49. Custom mapper, annotating the methods to qualify by means of ~@Named

EtTitleTranslator ")
public class Titles {

E EtEnglishToGermah)

E public String translateTitteEG (String title) {
E /[some mapping logic

E }

E E€tGermanToEnglish)

E public String translateTitleGE (String title) {
E /[some mapping logic

E }

}

Example 50. Mapper using named

Eruses = Titles .class)
public interface MovieMapper{
E (gtarget = "title
"EnglishToGermah })

E GermanReleasdoGermalf OriginalRelease movies);

, qualifiedByName = { "TitleTranslator ",

Although the used mechanism is the same, the user has to be a bit more careful.
Refactoring the name of a defined qualifier in an IDE will neatly refactor all other
occurrences as well. This is obviously not the case for changing a name.

6. Mapping collections

The mapping of collection types (List , Set etc.) is done in the same way as mapping bean types, i.e.

by defining mapping methods with the required source and target types in a mapper interface.
MapStruct supports a wide range of iterable types from the Java Collection Framework

The generated code will contain a loop which iterates over the source collection, converts each
element and puts it into the target collection. If a mapping method for the collection element types
is found in the given mapper or the mapper it uses, this method is invoked to perform the element
conversion. Alternatively, if an implicit conversion for the source and target element types exists,
this conversion routine will be invoked. The following shows an example:

43

http://docs.oracle.com/javase/tutorial/collections/intro/index.html

Example 51. Mapper with collection mapping methods

@Mapper
public interface CarMapper{

m

Set<String > integerSetToStringSet (Set<Integer > integers);

[T»

List <CarDto> carsToCarDtoq List <Car> cars);

E CarDto carToCarDtdq Car car);

The generated implementation of the integerSetToStringSet performs the conversion from Integer
to String for each element, while the generated carsToCarDtos() method invokes the carToCarDto()
method for each contained element as shown in the following:

44

Example 52. Generated collection mapping methods

IIGENERATED CODE

public Set<String > integerSetToStringSet (Set<Integer > integers) {

E if (integers ==null) {

E return null ;

E }

E Set<String > set = new HashSe&String >();
E for (Integer integer : integers) {

E set.add String . valueOf(integer)):
E }

E return set:

}

public List <CarDto> carsToCarDtoq List <Car> cars) {

E if (cars ==null) {

E return null ;

E }

E List <CarDto> list = newArrayList <CarDto>();
E for (Carcar : cars) {

E list .add carToCarDtd car));

E }

E return list :

}

Note that MapStruct will look for a collection mapping method with matching parameter and

return type, when mapping a collection-typed attribute of a bean, e.g. from Car#passengers(of type

List<Person>) to CarDto#passengers(of type List<PersonDto>).

Example 53. Usage of collection mapping method to map a bean property

/IGENERATED CODE
carDto. setPassengers(personsToPersonDto§ car. getPassengery)));

Some frameworks and libraries only expose JavaBeans getters but no setters for collection-typed
properties. Types generated from an XML schema using JAXB adhere to this pattern by default. In
this case the generated code for mapping such a property invokes its getter and adds all the

45

mapped elements:

Example 54. Usage of an adding method for collection mapping

/IGENERATED CODE
carDto. getPassengery) . addAll (personsToPersonDto§ car. getPassengery)));

It is not allowed to declare mapping methods with an iterable source and a non-
iterable target or the other way around. An error will be raised when detecting
this situation.

6.1. Mapping maps
Also map-based mapping methods are supported. The following shows an example:

Example 55. Map mapping method

public interface SourceTargetMapper{

(valueDateFormat = "dd.MM.yyyy)
MagsString , String > longDateMapToStringStringMaf MaglLong Date> source) ;

=~ [T M

Similar to iterable mappings, the generated code will iterate through the source map, convert each
value and key (either by means of an implicit conversion or by invoking another mapping method)
and put them into the target map:

46

Example 56. Generated implementation of map mapping method

IIGENERATED CODE

public MaplLong Date> stringStringMapToLongDateMagMagString , String > source) {

E if (source ==null) {

E return null ;

E)}

E Maglong Date> map= newHashMagong Datex();

E for (MapEntry<String , String > entry : source. entrySet ()) {
E Long key = Long parseLondg entry . getKey());

E Date value;

E try {

E value = new SimpleDateFormaf "dd.MM.yyyy). parse(entry . getValue()
);

E }

E catch(ParseException e) {

E throw new RuntimeException(e);

E }

E mapput(key, value);

E)}

E return map

}

6.2. Collection mapping strategies

MapStruct has a CollectionMappingStrategy , with the possible values: ACCESSOR_ONLY
SETTER_PREFERREDER_PREFERREOTARGET IMMUTABLE

In the table below, the dash - indicates a property name. Next, the trailing s indicates the plural
form. The table explains the options and how they are applied to the presence/absence of a set-s ,
add- and / or get-s method on the target object:

Table 2. Collection mapping strategy options

Option Only target Only target Both set-s / No set-s / add- Existing
set-s Available add- Available add- Available Available Target(@Target
Typg
ACCESSOR_ONIgét-s get-s set-s get-s get-s
SETTER_PREFER&-s add- set-s get-s get-s
ED

a7

