MapStruct 1.6.3 Reference Guide

Table of Contents

Preface
1. Introduction
2. Setup
2.1. Apache Maven
2.2. Gradle
2.3. Apache Ant
2.4. Configuration options
2.5. Using MapStruct with the Java Module System
2.6. IDE Integration
3. Defining a mapper
3.1. Basic mappings
3.2. Mapping Composition
3.3. Adding custom methods to mappers
3.4. Mapping methods with several source parameters
3.5. Mapping nested bean properties to current target
3.6. Updating existing bean instances
3.7. Mappings with direct field access
3.8. Using builders
3.9. Using Constructors
3.10. Mapping Map to Bean
3.11. Adding annotations
3.12. Adding Javadoc comments
4. Retrieving a mapper
4.1. The Mappers factory (no dependency injection)
4.2. Using dependency injection
4.3. Injection strategy
5. Data type conversions
5.1. Implicit type conversions
5.2. Mapping object references
5.3. Controlling nested bean mappings
5.4. Invoking custom mapping method
5.5. Invoking other mappers
5.6. Passing the mapping target type to custom mappers
5.7. Passing context or state objects to custom methods
5.8. Mapping method resolution

5.9. Mapping method selection based on qualifiers

A OO U W W W

12
13
13
13
16
17
19
20
20
21
23
26
29
30
30
32
32
33
34
35
35
38
40
41
43
44
47
48
49

5.10. Combining qualifiers with defaults 52

6. Mapping collections 54
6.1. Mapping maps 56
6.2. Collection mapping strategies 57
6.3. Implementation types used for collection mappings 58

7. Mapping Streams 59

8. Mapping Values 60
8.1. Mapping enum to enum types 60
8.2. Mapping enum-to-String or String-to-enum 64
8.3. Custom name transformation 65
8.4. ValueMapping Composition 68

9. Object factories 69

10. Advanced mapping options 74
10.1. Default values and constants 74
10.2. Expressions 75
10.3. Default Expressions 76
10.4. Subclass Mapping 77
10.5. Determining the result type 78
10.6. Controlling mapping result for 'null' arguments 79
10.7. Controlling mapping result for 'null’' collection or map arguments 79

10.8. Controlling mapping result for 'null' properties in bean mappings (update mapping

methods only). 80
10.9. Controlling checking result for 'null' properties in bean mapping 81
10.10. Source presence checking 81
10.11. Conditional Mapping 81
10.12. Exceptions 86
11. Reusing mapping configurations 88
11.1. Mapping configuration inheritance 88
11.2. Inverse mappings 89
11.3. Shared configurations 91
12. Customizing mappings 93
12.1. Mapping customization with decorators 93
12.2. Mapping customization with before-mapping and after-mapping methods 96
13. Using the MapStruct SPI 99
13.1. Custom Accessor Naming Strategy 100
13.2. Mapping Exclusion Provider 102
13.3. Custom Builder Provider 104
13.4. Custom Enum Naming Strategy 104
13.5. Custom Enum Transformation Strategy 108
13.6. Additional Supported Options Provider 108
14. Third-party API integration 110

14.1. Non-shipped annotations 110
14.2. Lombok 111

Preface

This is the reference documentation of MapStruct, an annotation processor for generating type-
safe, performant and dependency-free bean mapping code. This guide covers all the functionality
provided by MapStruct. In case this guide doesn’t answer all your questions just join the MapStruct
GitHub Discussions to get help.

You found a typo or other error in this guide? Please let us know by opening an issue in the
MapStruct GitHub repository, or, better yet, help the community and send a pull request for fixing
it!

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License.

1. Introduction

MapStruct is a Java annotation processor for the generation of type-safe bean mapping classes.

All you have to do is to define a mapper interface which declares any required mapping methods.
During compilation, MapStruct will generate an implementation of this interface. This
implementation uses plain Java method invocations for mapping between source and target
objects, i.e. no reflection or similar.

Compared to writing mapping code from hand, MapStruct saves time by generating code which is
tedious and error-prone to write. Following a convention over configuration approach, MapStruct
uses sensible defaults but steps out of your way when it comes to configuring or implementing
special behavior.

Compared to dynamic mapping frameworks, MapStruct offers the following advantages:

» Fast execution by using plain method invocations instead of reflection

* Compile-time type safety: Only objects and attributes mapping to each other can be mapped, no
accidental mapping of an order entity into a customer DTO etc.

¢ Clear error-reports at build time, if
o mappings are incomplete (not all target properties are mapped)

o mappings are incorrect (cannot find a proper mapping method or type conversion)

2. Setup

MapStruct is a Java annotation processor based on JSR 269 and as such can be used within
command line builds (javac, Ant, Maven etc.) as well as from within your IDE.

It comprises the following artifacts:

https://github.com/mapstruct/mapstruct/discussions
https://github.com/mapstruct/mapstruct
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://docs.oracle.com/javase/6/docs/technotes/guides/apt/index.html
http://www.jcp.org/en/jsr/detail?id=269

* org.mapstruct:mapstruct: contains the required annotations such as @Mapping

* org.mapstruct:mapstruct-processor: contains the annotation processor which generates mapper
implementations

2.1. Apache Maven
For Maven based projects add the following to your POM file in order to use MapStruct:

Example 1. Maven configuration

<properties>
<org.mapstruct.version>1.6.3</org.mapstruct.version>
</properties>

<dependencies>
<dependency>
<groupId>org.mapstruct</groupld>
<artifactId>mapstruct</artifactId>
<version>${org.mapstruct.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<confiquration>
<source>1.8</source>
<target>1.8</target>
<annotationProcessorPaths>
<path>
<groupld>org.mapstruct</groupld>
<artifactId>mapstruct-processor</artifactId>
<version>${org.mapstruct.version}</version>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
</plugins>
</build>

If you are working with the Eclipse IDE, make sure to have a current version of the
M2E plug-in. When importing a Maven project configured as shown above, it will
set up the MapStruct annotation processor so it runs right in the IDE, whenever
you save a mapper type. Neat, isn’t it?

To double check that everything is working as expected, go to your project’s

properties and select "Java Compiler” — "Annotation Processing" — "Factory Path".

The MapStruct processor JAR should be listed and enabled there. Any processor

options configured via the compiler plug-in (see below) should be listed under
(r') "Java Compiler" — "Annotation Processing".

If the processor is not kicking in, check that the configuration of annotation
processors through M2E is enabled. To do so, go to "Preferences" — "Maven" -
"Annotation Processing” and select "Automatically configure JDT APT".
Alternatively, specify the following in the properties section of your POM file:
<m2e.apt.activation>jdt_apt</m2e.apt.activation>.

Also make sure that your project is using Java 1.8 or later (project properties -
"Java Compiler" — "Compile Compliance Level"). It will not work with older

versions.

2.2. Gradle

Add the following to your Gradle build file in order to enable MapStruct:

Example 2. Gradle configuration

plugins {
id "com.diffplug.eclipse.apt” version "3.26.0" // Only for Eclipse

dependencies {

implementation "org.mapstruct:mapstruct:$1.6.3"
annotationProcessor "org.mapstruct:mapstruct-processor:$1.6.3"

// If you are using mapstruct in test code
testAnnotationProcessor "org.mapstruct:mapstruct-processor:$1.6.3"

You can find a complete example in the mapstruct-examples project on GitHub.

http://www.eclipse.org/m2e/
https://github.com/mapstruct/mapstruct-examples/tree/master/mapstruct-on-gradle

2.3. Apache Ant

Add the javac task configured as follows to your build.xml file in order to enable MapStruct in your
Ant-based project. Adjust the paths as required for your project layout.

Example 3. Ant configuration

<javac
srcdir="src/main/java"
destdir="target/classes"
classpath="path/to/mapstruct-1.6.3.jar">
<compilerarg line="-processorpath path/to/mapstruct-processor-1.6.3.jar"/>
<compilerarg line="-s target/generated-sources"/>
</javac>

You can find a complete example in the mapstruct-examples project on GitHub.

2.4. Configuration options

The MapStruct code generator can be configured using annotation processor options.

When invoking javac directly, these options are passed to the compiler in the form -Akey=value.
When using MapStruct via Maven, any processor options can be passed using compilerArgs within
the configuration of the Maven processor plug-in like this:

https://github.com/mapstruct/mapstruct-examples/tree/master/mapstruct-on-ant

Example 4. Maven configuration

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.5.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<annotationProcessorPaths>
<path>
<groupId>org.mapstruct</groupld>
<artifactId>mapstruct-processor</artifactId>
<version>${org.mapstruct.version}</version>
</path>
</annotationProcessorPaths>
<!-- due to problem in maven-compiler-plugin, for verbose mode add
showWarnings -->
<showWarnings>true</showWarnings>
<compilerArgs>
<arg>
-Amapstruct.suppressGeneratorTimestamp=true
</arg>
<arg>
-Amapstruct.suppressGeneratorVersionInfoComment=true
</arg>
<arg>
-Amapstruct.verbose=true
</arg>
</compilerArgs>
</confiquration>
</plugin>

Example 5. Gradle configuration

compileJava {
options.compilerArgs += [
"-Amapstruct.suppressGeneratorTimestamp=true',
"-Amapstruct.suppressGeneratorVersionInfoComment=true',
"-Amapstruct.verbose=true'

The following options exist:

Table 1. MapStruct processor options

Option

mapstruct.
suppressGeneratorTimes
tamp

mapstruct.verbose

mapstruct.
suppressGeneratorVersi
onInfoComment

Purpose

If set to true, the creation of a time stamp in the
@Generated annotation in the generated mapper
classes is suppressed.

If set to true, MapStruct in which MapStruct logs
its major decisions. Note, at the moment of
writing in Maven, also showWarnings needs to be
added due to a problem in the maven-compiler-
plugin configuration.

If set to true, the creation of the comment
attribute in the @Generated annotation in the
generated mapper classes is suppressed. The
comment contains information about the
version of MapStruct and about the compiler
used for the annotation processing.

Default

false

false

false

Option

mapstruct.defaultCompo
nentModel

Purpose Default

The name of the component model (see default
Retrieving a mapper) based on which mappers
should be generated.

Supported values are:

» default: the mapper uses no component

model, instances are typically retrieved via
Mappers#getMapper(Class)

* cdi: the generated mapper is an application-
scoped (from javax.enterprise.context or
jakarta.enterprise.context, depending on
which one is available with javax.inject
having priority) CDI bean and can be
retrieved via @Inject

* spring: the generated mapper is a singleton-

scoped Spring bean and can be retrieved via
@Autowired

* jsr330: the generated mapper is annotated
with {@code @Named} and can be retrieved
via @Inject (from javax.nject or
jakarta.inject, depending which one is
available with javax.inject having priority),
e.g. using Spring

* jakarta: the generated mapper is annotated
with {@code @Named} and can be retrieved
via @Inject (from jakarta.inject), e.g. using
Spring

* jakarta-cdi: the generated mapper is an
application-scoped (from
jakarta.enterprise.context) CDI bean and can
be retrieved via @Inject

If a component model is given for a specific
mapper via @Mapper#fcomponentModel(), the value
from the annotation takes precedence.

Option

mapstruct.defaultInjec
tionStrategy

mapstruct.unmappedTarg
etPolicy

10

Purpose

The type of the injection in mapper via
parameter uses. This is only used on annotated
based component models such as CDI, Spring
and JSR 330.

Supported values are:

» field: dependencies will be injected in fields

» constructor: will be generated constructor.
Dependencies will be injected via
constructor.

When CDI componentModel a default constructor
will also be generated. If a injection strategy is
given for a specific ~ mapper via
@Mapper#injectionStrategy(), the value from the
annotation takes precedence over the option.

The default reporting policy to be applied in
case an attribute of the target object of a
mapping method is not populated with a source
value.

Supported values are:

* ERROR: any unmapped target property will
cause the mapping code generation to fail

* WARN: any unmapped target property will
cause a warning at build time

o IGNORE: unmapped target properties are
ignored

If a policy is given for a specific mapper via
@Mapper#unmappedTargetPolicy(), the value from
the annotation takes precedence. If a policy is
given for a specific bean mapping via
@BeanMapping#tunmappedTargetPolicy(), it takes
precedence over both
@Mapper#unmappedTargetPolicy() and the option.

Default
field

WARN

Option

mapstruct.unmappedSour
cePolicy

mapstruct.
disableBuilders

Purpose

The default reporting policy to be applied in
case an attribute of the source object of a
mapping method is not populated with a target
value.

Supported values are:

* ERROR: any unmapped source property will
cause the mapping code generation to fail

* WARN: any unmapped source property will
cause a warning at build time

e IGNORE: unmapped source properties are
ignored

If a policy is given for a specific mapper via
@Mapper#unmappedSourcePolicy(), the value from
the annotation takes precedence. If a policy is
given for a specific bean mapping via
@BeanMapping#ignoreUnmappedSourceProperties(),
it takes precedence over both
@Mapper#unmappedSourcePolicy() and the option.

If set to true, then MapStruct will not use
builder patterns when doing the mapping. This
is equivalent to doing @Mapper(builder =
@Builder(disableBuilder = true)) for all of
your mappers.

Default
IGNORE

false

11

Option Purpose Default

mapstruct.nullValuelte The strategy to be applied when null is passed RETURN_NULL
rableMappingStrategy as a source value to an iterable mapping.

Supported values are:

o RETURN_NULL: if null is passed as a source
value, then null will be returned

o RETURN_DEFAULT: if null is passed then a
default value (empty collection) will be
returned

If a strategy is given for a specific mapper via
@Mapper#nullValuelterableMappingStrategy(), the
value from the annotation takes precedence. If a
strategy is given for a specific iterable mapping
via
@IterableMapping#nullValueMappingStrategy(), it
takes precedence over both
@Mapper#inul1ValuelterableMappingStrategy() and
the option.

mapstruct.nullValueMap The strategy to be applied when null is passed RETURN_NULL

MappingStrategy as a source value to a map mapping.

Supported values are:

o RETURN_NULL: if null is passed as a source
value, then null will be returned

o RETURN_DEFAULT: if null is passed then a
default value (empty map) will be returned

If a strategy is given for a specific mapper via
@Mapper#nullValueMapMappingStrategy(), the
value from the annotation takes precedence. If a
strategy is given for a specific map mapping via
@MapMapping#nullValueMappingStrategy(), it takes

precedence over both
@Mapper#nullValueMapMappingStrategy() and the
option.

2.5. Using MapStruct with the Java Module System
MapStruct can be used with Java 9 and higher versions.

To allow usage of the @Generated annotation java.annotation.processing.Generated (part of the
java.compiler module) can be enabled.

12

2.6. IDE Integration

There are optional MapStruct plugins for Intelli] and Eclipse that allow you to have additional
completion support (and more) in the annotations.

2.6.1. Intelli]

The MapStruct Intelli] plugin offers assistance in projects that use MapStruct.
Some features include:

* Code completion in target, source, expression

* Go To Declaration for properties in target and source
* Find Usages of properties in target and source

* Refactoring support

* Errors and Quick Fixes

2.6.2. Eclipse

The MapStruct Eclipse Plugin offers assistance in projects that use MapStruct.
Some features include:

* Code completion in target and source

* Quick Fixes

3. Defining a mapper

In this section you’ll learn how to define a bean mapper with MapStruct and which options you
have to do so.

3.1. Basic mappings

To create a mapper simply define a Java interface with the required mapping method(s) and
annotate it with the org.mapstruct.Mapper annotation:

13

https://plugins.jetbrains.com/plugin/10036-mapstruct-support
https://marketplace.eclipse.org/content/mapstruct-eclipse-plugin

Example 6. Java interface to define a mapper

public interface CarMapper {

(target = "manufacturer", source = "make")
(target = "seatCount", source = "numberOfSeats")
CarDto carToCarDto(Car car);

(target = "fullName", source = "name")
PersonDto personToPersonDto(Person person);

The @Mapper annotation causes the MapStruct code generator to create an implementation of the
CarMapper interface during build-time.

In the generated method implementations all readable properties from the source type (e.g. Car)
will be copied into the corresponding property in the target type (e.g. CarDto):

* When a property has the same name as its target entity counterpart, it will be mapped
implicitly.

* When a property has a different name in the target entity, its name can be specified via the
@Mapping annotation.

The property name as defined in the JavaBeans specification must be specified in
O the @Mapping annotation, e.g. seatCount for a property with the accessor methods
getSeatCount() and setSeatCount().

By means of the @BeanMapping(ignoreByDefault = true) the default behavior will be
explicit mapping, meaning that all mappings (including nested ones) have to be

@ specified by means of the @Mapping and no warnings will be issued on missing
target properties. This allows to ignore all fields, except the ones that are explicitly
defined through @Mapping.

Fluent setters are also supported. Fluent setters are setters that return the same
type as the type being modified.

E.g.
@
- public Builder seatCount(int seatCount) {

this.seatCount = seatCount;
return this;

To get a better understanding of what MapStruct does have a look at the following implementation

14

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

of the carToCarDto() method as generated by MapStruct:

Example 7. Code generated by MapStruct

// GENERATED CODE
public class CarMapperImpl implements CarMapper {

public CarDto carToCarDto(Car car) {
if (car == null) {
return null;

}

CarDto carDto = new CarDto();

if (car.getFeatures() != null) {
carDto.setFeatures(new ArraylList<String>(car.getFeatures()));
}
carDto.setManufacturer(car.getMake());
carDto.setSeatCount(car.getNumberOfSeats());
carDto.setDriver(personToPersonDto(car.getDriver()));
carDto.setPrice(String.valueOf(car.getPrice()));
if (car.getCategory() != null) {
carDto.setCategory(car.getCategory().toString());
}

carDto.setEngine(engineToEngineDto(car.getEngine()));

return carDto;

public PersonDto personToPersonDto(Person person) {
//...
}

private EngineDto engineToEngineDto(Engine engine) {
if (engine == null) {
return null;

}

EngineDto engineDto = new EngineDto();

engineDto.setHorsePower (engine.getHorsePower());
engineDto.setFuel(engine.getFuel());

return engineDto;

15

The general philosophy of MapStruct is to generate code which looks as much as possible as if you
had written it yourself from hand. In particular this means that the values are copied from source
to target by plain getter/setter invocations instead of reflection or similar.

As the example shows the generated code takes into account any name mappings specified via
@Mapping. If the type of a mapped attribute is different in source and target entity, MapStruct will
either apply an automatic conversion (as e.g. for the price property, see also Implicit type
conversions) or optionally invoke / create another mapping method (as e.g. for the driver / engine
property, see also Mapping object references). MapStruct will only create a new mapping method if
and only if the source and target property are properties of a Bean and they themselves are Beans
or simple properties. i.e. they are not Collection or Map type properties.

Collection-typed attributes with the same element type will be copied by creating a new instance of
the target collection type containing the elements from the source property. For collection-typed
attributes with different element types each element will be mapped individually and added to the
target collection (see Mapping collections).

MapStruct takes all public properties of the source and target types into account. This includes
properties declared on super-types.

3.2. Mapping Composition

MapStruct supports the use of meta annotations. The @Mapping annotation supports now @Target
with ElementType#ANNOTATION_TYPE in addition to ElementType#METHOD. This allows @Mapping to be used
on other (user defined) annotations for re-use purposes. For example:

(RetentionPolicy.CLASS)
(target = "id", ignore = true)

(target = "creationDate", expression = "java(new java.util.Date())")
(target = "name", source = "groupName")
public ToEntity { }

Can be used to characterise an Entity without the need to have a common base type. For instance,
ShelveEntity and BoxEntity do not share a common base type in the StorageMapper below.

16

public interface StorageMapper {

StorageMapper INSTANCE = Mappers.getMapper(StorageMapper.class);

(target = "weightLimit", source = "maxWeight")
ShelveEntity map(ShelveDto source);

(target = "label", source = "designation")
BoxEntity map(BoxDto source);

Still, they do have some properties in common. The @ToEntity assumes both target beans
ShelveEntity and BoxEntity have properties: "id", "creationDate”" and "name". It furthermore
assumes that the source beans ShelveDto and BoxDto always have a property "groupName". This
concept is also known as "duck-typing". In other words, if it quacks like duck, walks like a duck its
probably a duck.

Error messages are not mature yet: the method on which the problem occurs is displayed, as well
as the concerned values in the @Mapping annotation. However, the composition aspect is not visible.
The messages are "as if" the @Mapping would be present on the concerned method directly.
Therefore, the user should use this feature with care, especially when uncertain when a property is
always present.

A more typesafe (but also more verbose) way would be to define base classes / interfaces on the
target bean and the source bean and use @InheritConfiguration to achieve the same result (see
Mapping configuration inheritance).

3.3. Adding custom methods to mappers

In some cases it can be required to manually implement a specific mapping from one type to
another which can’t be generated by MapStruct. One way to handle this is to implement the custom
method on another class which then is used by mappers generated by MapStruct (see Invoking
other mappers).

Alternatively, when using Java 8 or later, you can implement custom methods directly in a mapper
interface as default methods. The generated code will invoke the default methods if the argument
and return types match.

As an example let’s assume the mapping from Person to PersonDto requires some special logic which
can’t be generated by MapStruct. You could then define the mapper from the previous example like
this:

17

Example 8. Mapper which defines a custom mapping with a default method

public interface CarMapper {

(...)
CarDto carToCarDto(Car car);

default PersonDto personToPersonDto(Person person) {
//hand-written mapping logic
}

The class generated by MapStruct implements the method carToCarDto(). The generated code in
carToCarDto() will invoke the manually implemented personToPersonDto() method when mapping
the driver attribute.

A mapper could also be defined in the form of an abstract class instead of an interface and
implement the custom methods directly in the mapper class. In this case MapStruct will generate an
extension of the abstract class with implementations of all abstract methods. An advantage of this
approach over declaring default methods is that additional fields could be declared in the mapper
class.

The previous example where the mapping from Person to PersonDto requires some special logic
could then be defined like this:

Example 9. Mapper defined by an abstract class

public abstract class CarMapper {
(...)
éﬁslic abstract CarDto carToCarDto(Car car);
public PersonDto personToPersonDto(Person person) {

//hand-written mapping logic
}

MapStruct will generate a sub-class of CarMapper with an implementation of the carToCarDto()
method as it is declared abstract. The generated code in carToCarDto() will invoke the manually
implemented personToPersonDto() method when mapping the driver attribute.

18

3.4. Mapping methods with several source parameters

MapStruct also supports mapping methods with several source parameters. This is useful e.g. in
order to combine several entities into one data transfer object. The following shows an example:

Example 10. Mapping method with several source parameters

public interface AddressMapper {

(target = "description", source = "person.description")
(target = "houseNumber", source = "address.houseNo")
DeliveryAddressDto personAndAddressToDeliveryAddressDto(Person person, Address
address);
}

The shown mapping method takes two source parameters and returns a combined target object. As
with single-parameter mapping methods properties are mapped by name.

In case several source objects define a property with the same name, the source parameter from
which to retrieve the property must be specified using the @Mapping annotation as shown for the
description property in the example. An error will be raised when such an ambiguity is not
resolved. For properties which only exist once in the given source objects it is optional to specify
the source parameter’s name as it can be determined automatically.

g Specifying the parameter in which the property resides is mandatory when using
the @Mapping annotation.

Mapping methods with several source parameters will return null in case all the
(r) source parameters are null. Otherwise the target object will be instantiated and all
et properties from the provided parameters will be propagated.

MapStruct also offers the possibility to directly refer to a source parameter.

Example 11. Mapping method directly referring to a source parameter

public interface AddressMapper {

(target = "description", source = "person.description")
(target = "houseNumber", source = "hn")
DeliveryAddressDto personAndAddressToDeliveryAddressDto(Person person, Integer
hn);
}

19

In this case the source parameter is directly mapped into the target as the example above
demonstrates. The parameter hn, a non bean type (in this case java.lang.Integer) is mapped to
houseNumber.

3.5. Mapping nested bean properties to current target

If you don’t want explicitly name all properties from nested source bean, you can use . as target.
This will tell MapStruct to map every property from source bean to target object. The following
shows an example:

Example 12. use of "target this" annotation "."

public interface CustomerMapper {

"name", source = "record.name")

(target
(target .", source = "record")
(target = ".", source = "account")

Customer customerDtoToCustomer(CustomerDto customerDto);

The generated code will map every property from CustomerDto.record to Customer directly, without
need to manually name any of them. The same goes for Customer.account.

When there are conflicts, these can be resolved by explicitely defining the mapping. For instance in
the example above. name occurs in CustomerDto.record and in CustomerDto.account. The mapping
@Mapping(target = "name", source = "record.name") resolves this conflict.

This "target this" notation can be very useful when mapping hierarchical objects to flat objects and
vice versa (@InheritInverseConfiguration).

3.6. Updating existing bean instances

In some cases you need mappings which don’t create a new instance of the target type but instead
update an existing instance of that type. This sort of mapping can be realized by adding a
parameter for the target object and marking this parameter with eMappingTarget. The following
shows an example:

Example 13. Update method

public interface CarMapper {

void updateCarFromDto(CarDto carDto, Car car);

20

The generated code of the updateCarFromDto() method will update the passed Car instance with the
properties from the given CarDto object. There may be only one parameter marked as mapping
target. Instead of void you may also set the method’s return type to the type of the target parameter,
which will cause the generated implementation to update the passed mapping target and return it
as well. This allows for fluent invocations of mapping methods.

For CollectionMappingStrategy.ACCESSOR_ONLY Collection- or map-typed properties of the target bean
to be updated will be cleared and then populated with the values from the corresponding source
collection or map. Otherwise, For CollectionMappingStrateqgy.ADDER_PREFERRED or
CollectionMappingStrateqy.TARGET_IMMUTABLE the target will not be cleared and the values will be
populated immediately.

3.7. Mappings with direct field access

MapStruct also supports mappings of public fields that have no getters/setters. MapStruct will use
the fields as read/write accessor if it cannot find suitable getter/setter methods for the property.

A field is considered as a read accessor if it is public or public final. If a field is static it is not
considered as a read accessor.

A field is considered as a write accessor only if it is public. If a field is final and/or static it is not
considered as a write accessor.

Small example:

21

Example 14. Example classes for mapping

public class Customer {

private Long id;
private String name;

//getters and setter omitted for brevity
}

public class CustomerDto {

public Long id;

public String customerName;
@Mapper
public interface CustomerMapper {

CustomerMapper INSTANCE = Mappers.getMapper(CustomerMapper.class);

@Mapping(target = "name", source = "customerName")
Customer toCustomer(CustomerDto customerDto);

@InheritInverseConfiguration
CustomerDto fromCustomer(Customer customer);

For the configuration from above, the generated mapper looks like:

22

Example 15. Generated mapper for example classes

// GENERATED CODE
public class CustomerMapperImpl implements CustomerMapper {

public Customer toCustomer(CustomerDto customerDto) {
/] ...
customer.setId(customerDto.id);
customer.setName(customerDto.customerName);
/] ...

public CustomerDto fromCustomer(Customer customer) {
/] ...
customerDto.id = customer.getId();
customerDto.customerName = customer.getName();
/] ...

You can find the complete example in the mapstruct-examples-field-mapping project on GitHub.

3.8. Using builders

MapStruct also supports mapping of immutable types via builders. When performing a mapping
MapStruct checks if there is a builder for the type being mapped. This is done via the
BuilderProvider SPI. If a Builder exists for a certain type, then that builder will be used for the
mappings.

The default implementation of the BuilderProvider assumes the following:

» The type has a parameterless public static builder creation method that returns a builder. So for
example Person has a public static method that returns PersonBuilder.

* The builder type has a parameterless public method (build method) that returns the type being
built. In our example PersonBuilder has a method returning Person.

* In case there are multiple build methods, MapStruct will look for a method called build, if such
method exists then this would be used, otherwise a compilation error would be created.

* A specific build method can be defined by using @Builder within: @BeanMapping, @Mapper or
@MapperConfig

* In case there are multiple builder creation methods that satisfy the above conditions then a
MoreThanOneBuilderCreationMethodException will be thrown from the DefaultBuilderProvider SPI.
In case of a MoreThanOneBuilderCreationMethodException MapStruct will write a warning in the
compilation and not use any builder.

23

https://github.com/mapstruct/mapstruct-examples/tree/master/mapstruct-field-mapping

If such type is found then MapStruct will use that type to perform the mapping to (i.e. it will look
for setters into that type). To finish the mapping MapStruct generates code that will invoke the
build method of the builder.

o Builder detection can be switched off by means of @Builder#disableBuilder.
MapStruct will fall back on regular getters / setters in case builders are disabled.

The Object factories are also considered for the builder type. E.g. If an object
o factory exists for our PersonBuilder then this factory would be used instead of the
builder creation method.

Detected builders influence @BeforeMapping and @AfterMapping behavior. See
o Mapping customization with before-mapping and after-mapping methods for
more information.

Example 16. Person with Builder example

public class Person {
private final String name;

protected Person(Person.Builder builder) {
this.name = builder.name;

}

public static Person.Builder builder() {
return new Person.Builder();

}

public static class Builder {
private String name;

public Builder name(String name) {
this.name = name;
return this;

}

public Person create() {
return new Person(this);

}

24

Example 17. Person Mapper definition

public interface PersonMapper {

Person map(PersonDto dto);

Example 18. Generated mapper with builder

// GENERATED CODE
public class PersonMapperImpl implements PersonMapper {

public Person map(PersonDto dto) {
if (dto == null) {
return null;

Person.Builder builder = Person.builder();
builder.name(dto.getName());

return builder.create();

Supported builder frameworks:

* Lombok - It is required to have the Lombok classes in a separate module. See for more
information at rzwitserloot/lombok#1538 and to set up Lombok with MapStruct, refer to
Lombok.

e AutoValue

e Immutables - When Immutables are present on the annotation processor path then the
ImmutablesAccessorNamingStrategy and ImmutablesBuilderProvider would be used by default

* FreeBuilder - When FreeBuilder is present on the annotation processor path then the
FreeBuilderAccessorNamingStrategy would be used by default. When using FreeBuilder then the
JavaBean convention should be followed, otherwise MapStruct won’t recognize the fluent
getters.

» It also works for custom builders (handwritten ones) if the implementation supports the

defined rules for the default BuilderProvider. Otherwise, you would need to write a custom
BuilderProvider

In case you want to disable using builders then you can pass the MapStruct

@ processor option mapstruct.disableBuilders to the compiler. e.g.
et -Amapstruct.disableBuilders=true.

25

https://projectlombok.org/
https://github.com/rzwitserloot/lombok/issues/1538
https://github.com/google/auto/blob/master/value/userguide/index.md
https://immutables.github.io/
https://github.com/google/FreeBuilder

3.9. Using Constructors

MapStruct supports using constructors for mapping target types. When doing a mapping MapStruct
checks if there is a builder for the type being mapped. If there is no builder, then MapStruct looks
for a single accessible constructor. When there are multiple constructors then the following is done
to pick the one which should be used:

 If a constructor is annotated with an annotation named @Default (from any package, see Non-
shipped annotations) it will be used.

* If a single public constructor exists then it will be used to construct the object, and the other non
public constructors will be ignored.

 If a parameterless constructor exists then it will be used to construct the object, and the other
constructors will be ignored.

* If there are multiple eligible constructors then there will be a compilation error due to
ambiguous constructors. In order to break the ambiguity an annotation named @Default (from
any package, see Non-shipped annotations) can used.

26

Example 19. Deciding which constructor to use

public class Vehicle {
protected Vehicle() { }

// MapStruct will use this constructor, because it is a single public
constructor

public Vehicle(String color) { }
}

public class Car {

// MapStruct will use this constructor, because it is a parameterless empty
constructor
public Car() { }

public Car(String make, String color) { }
}

public class Truck {
public Truck() { }

// MapStruct will use this constructor, because it is annotated with @Default
@Default
public Truck(String make, String color) { }

¥
public class Van {

// There will be a compilation error when using this class because MapStruct
cannot pick a constructor

public Van(String make) { }

public Van(String make, String color) { }

When using a constructor then the names of the parameters of the constructor will be used and
matched to the target properties. When the constructor has an annotation named
@ConstructorProperties (from any package, see Non-shipped annotations) then this annotation will
be used to get the names of the parameters.

When an object factory method or a method annotated with @0bjectFactory exists,

o it will take precedence over any constructor defined in the target. The target object
constructor will not be used in that case.

27

Example 20. Person with constructor parameters

public class Person {

private final String name;
private final String surname;

public Person(String name, String surname) {

this.name = name;
this.surname = surname;

Example 21. Person With Constructor Mapper definition

public interface PersonMapper {

Person map(PersonDto dto);

Example 22. Generated mapper with constructor

// GENERATED CODE
public class PersonMapperImpl implements PersonMapper {

public Person map(PersonDto dto) {

if (dto == null) {
return null;

String name;

String surname;

name = dto.getName();
surname = dto.getSurname();

Person person = new Person(name, surname);

return person;

28

3.10. Mapping Map to Bean

There are situations when a mapping from a Map<String, 777> into a specific bean is needed.
MapStruct offers a transparent way of doing such a mapping by using the target bean properties (or
defined through Mapping#source) to extract the values from the map. Such a mapping looks like:

Example 23. Example classes for mapping map to bean

public class Customer {

private Long id;
private String name;

//getters and setter omitted for brevity
}

@Mapper
public interface CustomerMapper {

@Mapping(target = "name", source = "customerName")
Customer toCustomer(Map<String, String> map);

Example 24. Generated mapper for mapping map to bean

// GENERATED CODE
public class CustomerMapperImpl implements CustomerMapper {

@Override
public Customer toCustomer(Map<String, String> map) {
/] ...
if (map.containsKey("id")) {
customer.setId(Integer.parselnt(map.get("id")));
}
if (map.containsKey("customerName")) {
customer.setName(map.get("customerName"));

}
/] ...

29

All existing rules about mapping between different types and using other mappers

o defined with Mapper#uses or custom methods in the mappers are applied. i.e. You
can map from Map<String, Integer> where for each property a conversion from
Integer into the respective property will be needed.

When a raw map or a map that does not have a String as a key is used, then a
A warning will be generated. The warning is not generated if the map itself is
mapped into some other target property directly as is.

3.11. Adding annotations

Other frameworks sometimes requires you to add annotations to certain classes so that they can
easily detect the mappers. Using the @AnnotateWith annotation you can generate an annotation at
the specified location.

For example Apache Camel has a @Converter annotation which you can apply to generated mappers
using the @Annotatelith annotation.

Example 25. AnnotateWith source example

(
value = Converter.class,
elements = .Element(name = "generateBulkLoader", booleans = true)

)

public interface MyConverter {
(Converter.class)
DomainObject map(DtoObject dto);

Example 26. AnnotateWith generated mapper
(generateBulkLoader = true)
public class MyConverterImpl implements MyConverter {

public DomainObject map(DtoObject dto) {
// default mapping behaviour

}

3.12. Adding Javadoc comments

MapStruct provides support for defining Javadoc comments in the generated mapper
implementation using the org.mapstruct.Javadoc annotation.

30

This functionality could be relevant especially in situations where certain Javadoc standards need
to be met or to deal with Javadoc validation constraints.

The @Javadoc annotation defines attributes for the different Javadoc elements.
Consider the following example:

Example 27. Javadoc annotation example

@Mapper
@Javadoc(
value = "This is the description”,
authors = { "author1", "author2" },
deprecated = "Use {@link OtherMapper} instead",
since = "0.1"

)

public interface MyAnnotatedWithJavadocMapper {
//...

}

Example 28. Javadoc annotated generated mapper

/**

*

This is the description

* @author author1
* @author author?

*

@deprecated Use {@link OtherMapper} instead
* @since 0.1
*/
public class MyAnnotatedWithJavadocMapperImpl implements
MyAnnotatedWithJavadocMapper {
//...
}

The entire Javadoc comment block can be provided directly as well.

31

Example 29. Javadoc annotation example with the entire Javadoc comment block provided directly

(
"This is the description\n"
"o
"@author author1\n"
"@author author2\n"
"o
"@deprecated Use {@link OtherMapper} instead\n"
"@since 0.1\n"

+ 4+ + + + +

)
public interface MyAnnotatedWithJavadocMapper {

/],
}

Or using Text blocks:

Example 30. Javadoc annotation example with the entire Javadoc comment block provided directly using
Text blocks

(

nmnn

This is the description

@author authorl
@author author2

@deprecated Use {@link OtherMapper} instead

@since 0.1

)

public interface MyAnnotatedWithJavadocMapper {
//...

}

4. Retrieving a mapper

4.1. The Mappers factory (no dependency injection)

When not wusing a DI framework, Mapper instances can be retrieved via the
org.mapstruct.factory.Mappers class. Just invoke the getMapper () method, passing the interface type
of the mapper to return:

32

Example 31. Using the Mappers factory

CarMapper mapper = Mappers.getMapper(CarMapper.class);

By convention, a mapper interface should define a member called INSTANCE which holds a single
instance of the mapper type:

Example 32. Declaring an instance of a mapper (interface)

public interface CarMapper {
CarMapper INSTANCE = Mappers.getMapper(CarMapper.class);

CarDto carToCarDto(Car car);

Example 33. Declaring an instance of a mapper (abstract class)

public abstract class CarMapper {
public static final CarMapper INSTANCE = Mappers.getMapper(CarMapper.class);

CarDto carToCarDto(Car car);

This pattern makes it very easy for clients to use mapper objects without repeatedly instantiating
new instances:

Example 34. Accessing a mapper

Car car = ...;
CarDto dto = CarMapper.INSTANCE.carToCarDto(car);

Note that mappers generated by MapStruct are stateless and thread-safe and thus can safely be
accessed from several threads at the same time.

4.2. Using dependency injection

If you’re working with a dependency injection framework such as CDI (Contexts and Dependency

33

http://jcp.org/en/jsr/detail?id=346

Injection for Java'™ EE) or the Spring Framework, it is recommended to obtain mapper objects via
dependency injection and not via the Mappers class as described above. For that purpose you can
specify the component model which generated mapper classes should be based on either via
@Mapper#componentModel or using a processor option as described in Configuration options.

Currently there is support for CDI and Spring (the latter either via its custom annotations or using
the JSR 330 annotations). See Configuration options for the allowed values of the componentModel
attribute which are the same as for the mapstruct.defaultComponentModel processor option and
constants are defined in a class MappingConstants.ComponentModel. In both cases the required
annotations will be added to the generated mapper implementations classes in order to make the
same subject to dependency injection. The following shows an example using CDI:

Example 35. A mapper using the CDI component model

(componentModel = MappingConstants.ComponentModel.CDI)
public interface CarMapper {

CarDto carToCarDto(Car car);

The generated mapper implementation will be marked with the @ApplicationScoped annotation and
thus can be injected into fields, constructor arguments etc. using the @Inject annotation:

Example 36. Obtaining a mapper via dependency injection

private CarMapper mapper;

A mapper which uses other mapper classes (see Invoking other mappers) will obtain these mappers
using the configured component model. So if CarMapper from the previous example was using
another mapper, this other mapper would have to be an injectable CDI bean as well.

4.3. Injection strategy

When using dependency injection, you can choose between constructor, field, or setter injection.
This can be done by either providing the injection strategy via @Mapper or @MapperConfig annotation.

34

http://www.springsource.org/spring-framework

Example 37. Using constructor injection

(componentModel = MappingConstants.ComponentModel.CDI, uses = EngineMapper
.class, injectionStrategy = InjectionStrategy.CONSTRUCTOR)
public interface CarMapper {
CarDto carToCarDto(Car car);

}

The generated mapper will inject classes defined in the uses attribute if MapStruct has detected
that it needs to use an instance of it for a mapping. When InjectionStrategy#CONSTRUCTOR is used, the
constructor will have the appropriate annotation and the fields won’tt When
InjectionStrategy#FIELD is used, the annotation is on the field itself. When InjectionStrategy#SETTER
is used the annotation is on a generated setter method. For now, the default injection strategy is
field injection, but it can be configured with Configuration options. It is recommended to use
constructor injection to simplify testing.

When you define mappers in Spring with circular dependencies compilation may fail. In that case
utilize the InjectionStrateqy#SETTER strategy.

(r) For abstract classes or decorators setter injection should be used.
w

5. Data type conversions

Not always a mapped attribute has the same type in the source and target objects. For instance an
attribute may be of type int in the source bean but of type Long in the target bean.

Another example are references to other objects which should be mapped to the corresponding
types in the target model. E.g. the class Car might have a property driver of the type Person which
needs to be converted into a PersonDto object when mapping a Car object.

In this section youw’ll learn how MapStruct deals with such data type conversions.

5.1. Implicit type conversions

MapStruct takes care of type conversions automatically in many cases. If for instance an attribute is
of type int in the source bean but of type String in the target bean, the generated code will
transparently perform a conversion by calling String#valueOf(int) and Integer#parseInt(String),
respectively.

Currently the following conversions are applied automatically:

* Between all Java primitive data types and their corresponding wrapper types, e.g. between int
and Integer, boolean and Boolean etc. The generated code is null aware, i.e. when converting a
wrapper type into the corresponding primitive type a null check will be performed.

* Between all Java primitive number types and the wrapper types, e.g. between int and long or
byte and Integer.

35

Converting from larger data types to smaller ones (e.g. from long to int) can cause

A a value or precision loss. The Mapper and MapperConfig annotations have a method
typeConversionPolicy to control warnings / errors. Due to backward compatibility
reasons the default value is ReportingPolicy.IGNORE.

* Between all Java primitive types (including their wrappers) and String, e.g. between int and
String or Boolean and String. A format string as understood by java.text.DecimalFormat can be
specified.

Example 38. Conversion from int to String

@Mapper
public interface CarMapper {

@Mapping(source = "price", numberFormat = "$#.00")
CarDto carToCarDto(Car car);

@lterableMapping(numberFormat = "$#.00")
List<String> prices(List<Integer> prices);

* Between enum types and String.
* Between enum types and Integer, according to enum.ordinal().

> When converting from an Integer, the value needs to be less than the number of values of
the enum, otherwise an ArrayOutOfBoundsException is thrown.

* Between big number types (java.math.BigInteger, java.math.BigDecimal) and Java primitive
types (including their wrappers) as well as String. A format string as understood by
java.text.DecimalFormat can be specified.

Example 39. Conversion from BigDecimal to String

@Mapper
public interface CarMapper {

@Mapping(source = "power", numberFormat = "#.##EQ")
CarDto carToCarDto(Car car);

e Between JAXBElement<T> and T, List<JAXBElement<T>> and List<T>
» Between java.util.Calendar/java.util.Date and JAXB’s XMLGregorianCalendar

* Between java.util.Date/XMLGregorianCalendar and String. A format string as understood by
java.text.SimpleDateFormat can be specified via the dateFormat option as this:

36

Example 40. Conversion from Date to String

@Mapper
public interface CarMapper {

@Mapping(source = "manufacturingDate", dateFormat = "dd.MM.yyyy")
CarDto carToCarDto(Car car);

@lterableMapping(dateFormat = "dd.MM.yyyy")
List<String> stringlListToDatelList(List<Date> dates);

* Between Jodas org.joda.time.DateTime, org.joda.time.LocalDateTime, org.joda.time.LocalDate,
org.joda.time.LocalTime and String. A format string as understood by
java.text.SimpleDateFormat can be specified via the dateFormat option (see above).

* Between Jodas org.joda.time.DateTime and javax.xml.datatype.XMLGregorianCalendar,
java.util.Calendar.

* Between Jodas org.joda.time.LocalDateTime, org.joda.time.LocalDate and
javax.xml.datatype.XMLGregorianCalendar, java.util.Date.

* Between java.time.LocalDate, java.time.LocalDateTime and
javax.xml.datatype.XMLGregorianCalendar.

* Between java.time.ZonedDateTime, java.time.LocalDateTime, java.time.LocalDate,
java.time.LocalTime from Java 8 Date-Time package and String. A format string as understood
by java.text.SimpleDateFormat can be specified via the dateFormat option (see above).

* Between java.time.Instant, java.time.Duration, java.time.Period from Java 8 Date-Time
package and String using the parse method in each class to map from String and using toString
to map into String.

* Between java.time.ZonedDateTime from Java 8 Date-Time package and java.util.Date where,
when mapping a ZonedDateTime from a given Date, the system default timezone is used.

* Between java.time.LocalDateTime from Java 8 Date-Time package and java.util.Date where
timezone UTC is used as the timezone.

* Between java.time.LocalDate from Java 8 Date-Time package and java.util.Date /java.sql.Date
where timezone UTC is used as the timezone.

* Between java.time.Instant from Java 8 Date-Time package and java.util.Date.

* Between java.time.LocalDateTime from Java 8 Date-Time package and java.time.LocalDate from
the same package.

* Between java.time.ZonedDateTime from Java 8 Date-Time package and java.util.Calendar.
* Between java.sql.Date and java.util.Date

* Between java.sql.Time and java.util.Date

* Between java.sql.Timestamp and java.util.Date

* When converting from a String, omitting Mapping#dateFormat, it leads to usage of the default

37

pattern and date format symbols for the default locale. An exception to this rule is
XmlGregorianCalendar which results in parsing the String according to XML Schema 1.0 Part 2,
Section 3.2.7-14.1, Lexical Representation.

Between java.util.Currency and String.

o When converting from a String, the value needs to be a valid 1SO-4217 alphabetic code
otherwise an I11egalArgumentException is thrown.

Between java.util.UUID and String.

- When converting from a String, the value needs to be a valid UUID otherwise an
I1legalArgumentException is thrown.

Between String and StringBuilder
Between java.net.URL and String.

- When converting from a String, the value needs to be a valid URL otherwise a
MalformedURLException is thrown.

Between java.util.Locale and String.

o When converting from a Locale, the resulting String will be a well-formed IETF BCP 47
language tag representing the locale. When converting from a String, the locale that best
represents the language tag will be returned. See Locale.forLanguageTag() and
Locale.toLanguageTag() for more information.

5.2. Mapping object references

Typically an object has not only primitive attributes but also references other objects. E.g. the Car
class could contain a reference to a Person object (representing the car’s driver) which should be
mapped to a PersonDto object referenced by the CarDto class.

In this case just define a mapping method for the referenced object type as well:

Example 41. Mapper with one mapping method using another

public interface CarMapper {
CarDto carToCarDto(Car car);

PersonDto personToPersonDto(Person person);

The generated code for the carToCarDto() method will invoke the personToPersonDto() method for
mapping the driver attribute, while the generated implementation for personToPersonDto()
performs the mapping of person objects.

That way it is possible to map arbitrary deep object graphs. When mapping from entities into data
transfer objects it is often useful to cut references to other entities at a certain point. To do so,

38

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/URL
https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html#forLanguageTag-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html#toLanguageTag--

implement a custom mapping method (see the next section) which e.g. maps a referenced entity to
its id in the target object.

When generating the implementation of a mapping method, MapStruct will apply the following
routine for each attribute pair in the source and target object:

1. If source and target attribute have the same type, the value will be simply copied direct from
source to target. If the attribute is a collection (e.g. a List) a copy of the collection will be set into
the target attribute.

2. If source and target attribute type differ, check whether there is another mapping method
which has the type of the source attribute as parameter type and the type of the target attribute
as return type. If such a method exists it will be invoked in the generated mapping
implementation.

3. If no such method exists MapStruct will look whether a built-in conversion for the source and
target type of the attribute exists. If this is the case, the generated mapping code will apply this
conversion.

4. If no such method exists MapStruct will apply complex conversions:

a. mapping method, the result mapped by mapping method, like this: target = method1(
method2(source))

b. built-in conversion, the result mapped by mapping method, like this: target = method(
conversion(source))

c. mapping method, the result mapped by build-in conversion, like this: target = conversion(
method(source))
5. If no such method was found MapStruct will try to generate an automatic sub-mapping method
that will do the mapping between the source and target attributes.

6. If MapStruct could not create a name based mapping method an error will be raised at build
time, indicating the non-mappable attribute and its path.

A mapping control (MappingControl) can be defined on all levels (@MapperConfig, @Mapper,
@BeanMapping, @Mapping), the latter taking precedence over the former. For example: @Mapper(
mappingControl = NoComplexMapping.class) takes precedence over @MapperConfig(mappingControl =
DeepClone.class). @IterableMapping and @MapMapping work similar as @Mapping. MappingControl is
experimental from MapStruct 1.4. MappingControl has an enum that corresponds to the first 4
options above: MappingControl.Use#DIRECT, MappingControl.Use#MAPPING_METHOD,
MappingControl.Use#BUILT_IN_CONVERSION and MappingControl.Use#COMPLEX_MAPPING the presence of
which allows the user to switch on a option. The absence of an enum switches off a mapping
option. Default they are all present enabling all mapping options.

o In order to stop MapStruct from generating automatic sub-mapping methods as in
5. above, one can use @Mapper(disableSubMappingMethodsGeneration = true).

The user has full control over the mapping by means of meta annotations. Some
handy ones have been defined such as @DeepClone which only allows direct

O mappings. The result: if source and target type are the same, MapStruct will make
et a deep clone of the source. Sub-mappings-methods have to be allowed (default
option).

39

o During the generation of automatic sub-mapping methods Shared configurations
will not be taken into consideration, yet. Follow issue #1086 for more information.

o Constructor properties of the target object are also considered as target properties.
You can read more about that in Using Constructors

5.3. Controlling nested bean mappings

As explained above, MapStruct will generate a method based on the name of the source and target
property. Unfortunately, in many occasions these names do not match.

The ’ notation in an @Mapping source or target type can be used to control how properties should be
mapped when names do not match. There is an elaborate example in our examples repository to
explain how this problem can be overcome.

In the simplest scenario there’s a property on a nested level that needs to be corrected. Take for
instance a property fish which has an identical name in FishTankDto and FishTank. For this property
MapStruct automatically generates a mapping: FishDto fishToFishDto(Fish fish). MapStruct cannot
possibly be aware of the deviating properties kind and type. Therefore this can be addressed in a
mapping rule: eMapping(target="fish.kind", source="fish.type"). This tells MapStruct to deviate
from looking for a name kind at this level and map it to type.

Example 42. Mapper controlling nested beans mappings I

public interface FishTankMapper {

(target = "fish.kind", source = "fish.type")

(target = "fish.name", ignore = true)

(target = "ornament", source = "interior.ornament")
(target = "material.materialType", source = "material")
(target = "quality.report.organisation.name", source =

"quality.report.organisationName")
FishTankDto map(FishTank source);
}

The same constructs can be used to ignore certain properties at a nesting level, as is demonstrated
in the second @Mapping rule.

MapStruct can even be used to “cherry pick” properties when source and target do not share the
same nesting level (the same number of properties). This can be done in the source — and in the
target type. This is demonstrated in the next 2 rules: @Mapping(target="ornament",
source="interior.ornament") and @Mapping(target="material.materialType", source="material").

The latter can even be done when mappings first share a common base. For example: all properties
that share the same name of Quality are mapped to QualityDto. Likewise, all properties of Report
are mapped to ReportDto, with one exception: organisation in OrganisationDto is left empty (since

40

https://github.com/mapstruct/mapstruct/issues/1086
https://github.com/mapstruct/mapstruct-examples/tree/master/mapstruct-nested-bean-mappings

there is no organization at the source level). Only the name is populated with the organisationName

from Report. This is demonstrated in @Mapping(target="quality.report.organisation.name",
source="quality.report.organisationName")

Coming back to the original example: what if kind and type would be beans themselves? In that case
MapStruct would again generate a method continuing to map. Such is demonstrated in the next
example:

Example 43. Mapper controlling nested beans mappings II

public interface FishTankMapperWithDocument {

(target = "fish.kind", source = "fish.type")

(target = "fish.name", expression = "java(\"Jaws\")")

(target = "plant”, ignore = true)

(target = "ornament", ignore = true)

(target = "material”, ignore = true)

(target = "quality.document", source = "quality.report")

(target = "quality.document.organisation.name", constant = "NoIdealnc"

FishTankWithNestedDocumentDto map(FishTank source);

Note what happens in @Mapping(target="quality.document", source="quality.report"). DocumentDto
does not exist as such on the target side. It is mapped from Report. MapStruct continues to generate
mapping code here. That mapping itself can be guided towards another name. This even works for
constants and expression. Which is shown in the final example:
@Mapping(target="quality.document.organisation.name", constant="NoIdealnc").

MapStruct will perform a null check on each nested property in the source.

Instead of configuring everything via the parent method we encourage users to
explicitly write their own nested methods. This puts the configuration of the

O nested mapping into one place (method) where it can be reused from several
methods in the upper level, instead of re-configuring the same things on all of
those upper methods.

In some cases the ReportingPolicy that is going to be used for the generated nested
o method would be IGNORE. This means that it is possible for MapStruct not to report
unmapped target properties in nested mappings.

5.4. Invoking custom mapping method

Sometimes mappings are not straightforward and some fields require custom logic.

41

The example below demonstrates how the properties length, width and height in FishTank can be
mapped to the VolumeDto bean, which is a member of FishTankWithVolumeDto. VolumeDto contains the
properties volume and description. Custom logic is achieved by defining a method which takes
FishTank instance as a parameter and returns a VolumeDto. MapStruct will take the entire parameter
source and generate code to call the custom method mapVolume in order to map the FishTank object to
the target property volume.

The remainder of the fields could be mapped the regular way: using mappings defined defined by
means of @Mapping annotations.

Example 44. Manually implemented mapping method

public class FishTank {
Fish fish;
String material;
Quality quality;
int length;
int width;
int height;

}

public class FishTankWithVolumeDto {
FishDto fish;
MaterialDto material;
QualityDto quality;
VolumeDto volume;

}

public class VolumeDto {
int volume;
String description;

public abstract class FishTankMapperWithVolume {

(target = "fish.kind", source = "source.fish.type")

(target = "material.materialType", source = "source.material")
(target = "quality.document", source = "source.quality.report")
(target = "volume", source = "source")

abstract FishTankWithVolumeDto map(FishTank source);

VolumeDto mapVolume(FishTank source) {
int volume = source.length * source.width * source.height;
String desc = volume < 100 ? "Small" : "Large";
return new VolumeDto(volume, desc);

42

Note the @Mapping annotation where source field is equal to "source", indicating the parameter name
source itself in the method map(FishTank source) instead of a (target) property in FishTank.

5.5. Invoking other mappers

In addition to methods defined on the same mapper type MapStruct can also invoke mapping
methods defined in other classes, be it mappers generated by MapStruct or hand-written mapping
methods. This can be useful to structure your mapping code in several classes (e.g. with one
mapper type per application module) or if you want to provide custom mapping logic which can’t
be generated by MapStruct.

For instance the Car class might contain an attribute manufacturingDate while the corresponding
DTO attribute is of type String. In order to map this attribute, you could implement a mapper class
like this:

Example 45. Manually implemented mapper class

public class DateMapper {

public String asString(Date date) {
return date != null ? new SimpleDateFormat("yyyy-MM-dd")
.format(date) : null;

}

public Date asDate(String date) {
try {
return date != null ? new SimpleDateFormat("yyyy-MM-dd")
.parse(date) : null;
}
catch (ParseException e) {
throw new RuntimeException(e);

}

In the @Mapper annotation at the CarMapper interface reference the DateMapper class like this:

Example 46. Referencing another mapper class

(uses=DateMapper.class)
public interface CarMapper {

CarDto carToCarDto(Car car);

When generating code for the implementation of the carToCarDto() method, MapStruct will look for

43

a method which maps a Date object into a String, find it on the DateMapper class and generate an
invocation of asString() for mapping the manufacturingDate attribute.

Generated mappers retrieve referenced mappers using the component model configured for them.
If e.g. CDI was used as component model for CarMapper, DateMapper would have to be a CDI bean as
well. When using the default component model, any hand-written mapper classes to be referenced
by MapStruct generated mappers must declare a public no-args constructor in order to be
instantiable.

5.6. Passing the mapping target type to custom
mappers

When having a custom mapper hooked into the generated mapper with @Mapper#uses(), an
additional parameter of type Class (or a super-type of it) can be defined in the custom mapping
method in order to perform general mapping tasks for specific target object types. That attribute
must be annotated with @TargetType for MapStruct to generate calls that pass the Class instance
representing the corresponding property type of the target bean.

For instance, the CarDto could have a property owner of type Reference that contains the primary key
of a Person entity. You could now create a generic custom mapper that resolves any Reference
objects to their corresponding managed JPA entity instances.

e.g.

44

Example 47. Example classes for the passing target type example

public class Car {

private Person owner;
/] ...
}

public class Person extends BaseEntity {

/] ...
}

public class Reference {
private String pk;
/] ...

}

public class CarDto {

private Reference owner;
/] ...

45

Example 48. Mapping method expecting mapping target type as parameter

@ApplicationScoped // CDI component model
public class ReferenceMapper {

@PersistenceContext
private EntityManager entityManager;

public <T extends BaseEntity> T resolve(Reference reference, @TargetType
(lass<T> entityClass) {
return reference != null ? entityManager.find(entityClass, reference
.getPk()) : null;
}

public Reference toReference(BaseEntity entity) {
return entity != null ? new Reference(entity.getPk()) : null;
}
}

@Mapper (componentModel = MappingConstants.ComponentModel.(CDI, uses =
ReferenceMapper.class)
public interface CarMapper {

Car carDtoToCar(CarDto carDto);

MapStruct will then generate something like this:

46

Example 49. Generated code

//GENERATED CODE

public class CarMapperImpl implements CarMapper {
private ReferenceMapper referenceMapper;

public Car carDtoToCar(CarDto carDto) {
if (carDto == null) {
return null;

}
Car car = new Car();

car.setOwner(referenceMapper.resolve(carDto.getOwner(), Owner.class));
/] ...

return car;

5.7. Passing context or state objects to custom methods

Additional context or state information can be passed through generated mapping methods to
custom methods with @Context parameters. Such parameters are passed to other mapping methods,
@0bjectFactory methods (see Object factories) or @BeforeMapping / @AfterMapping methods (see
Mapping customization with before-mapping and after-mapping methods) when applicable and
can thus be used in custom code.

@Context parameters are searched for @0bjectFactory methods, which are called on the provided
context parameter value if applicable.

@Context parameters are also searched for eBeforeMapping / @AfterMapping methods, which are called
on the provided context parameter value if applicable.

Note: no null checks are performed before calling before/after mapping methods on context
parameters. The caller needs to make sure that null is not passed in that case.

For generated code to call a method that is declared with @Context parameters, the declaration of
the mapping method being generated needs to contain at least those (or assignable) @Context
parameters as well. The generated code will not create new instances of missing @Context
parameters nor will it pass a literal null instead.

47

Example 50. Using @Context parameters for passing data down to hand-written property mapping methods

public abstract CarDto toCar(Car car, Locale translationLocale);

protected OwnerManualDto translateOwnerManual(OwnerManual ownerManual,
Locale locale) {

// manually implemented logic to translate the OwnerManual with the given
Locale

}

MapStruct will then generate something like this:

Example 51. Generated code

//GENERATED CODE
public CarDto toCar(Car car, Locale translationlLocale) {
if (car == null) {
return null;

}

CarDto carDto = new CarDto();

carDto.setOwnerManual(translateOwnerManual(car.getOwnerManual(),
translationlLocale);

// more generated mapping code

return carDto;

5.8. Mapping method resolution

When mapping a property from one type to another, MapStruct looks for the most specific method
which maps the source type into the target type. The method may either be declared on the same
mapper interface or on another mapper which is registered via @Mapper#uses(). The same applies
for factory methods (see Object factories).

The algorithm for finding a mapping or factory method resembles Java’s method resolution
algorithm as much as possible. In particular, methods with a more specific source type will take
precedence (e.g. if there are two methods, one which maps the searched source type, and another
one which maps a super-type of the same). In case more than one most-specific method is found, an
error will be raised.

48

When working with JAXB, e.g. when converting a String to a corresponding
JAXBElement<String>, MapStruct will take the scope and name attributes of
O @XmlElementDecl annotations into account when looking for a mapping method.
et This makes sure that the created JAXBElement instances will have the right QNAME
value. You can find a test which maps JAXB objects here.

5.9. Mapping method selection based on qualifiers

In many occasions one requires mapping methods with the same method signature (apart from the
name) that have different behavior. MapStruct has a handy mechanism to deal with such
situations: @Qualifier (org.mapstruct.Qualifier). A ‘qualifier’ is a custom annotation that the user
can write, ‘stick onto’ a mapping method which is included as used mapper and can be referred to
in a bean property mapping, iterable mapping or map mapping. Multiple qualifiers can be ‘stuck
onto’ a method and mapping.

So, let’s say there is a hand-written method to map titles with a String return type and String
argument amongst many other referenced mappers with the same String return type - String
argument signature:

Example 52. Several mapping methods with identical source and target types

public class Titles {

public String translateTitleEG(String title) {
// some mapping logic

}

public String translateTitleGE(String title) {

// some mapping logic

}

And a mapper using this handwritten mapper, in which source and target have a property 'title’'
that should be mapped:

Example 53. Mapper causing an ambiguous mapping method error

(uses = Titles.class)
public interface MovieMapper {

GermanRelease toGerman(OriginalRelease movies);

Without the use of qualifiers, this would result in an ambiguous mapping method error, because 2

49

https://github.com/mapstruct/mapstruct/blob/1.6.3/integrationtest/src/test/resources/jaxbTest/src/test/java/org/mapstruct/itest/jaxb/JaxbBasedMapperTest.java

qualifying methods are found (translateTitleEG, translateTitleGE) and MapStruct would not have a
hint which one to choose.

Enter the qualifier approach:

Example 54. Declaring a qualifier type

import org.mapstruct.Qualifier;

@Qualifier
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.CLASS)
public @interface TitleTranslator {

}

And, some qualifiers to indicate which translator to use to map from source language to target
language:

Example 55. Declaring qualifier types for mapping methods

import org.mapstruct.Qualifier;

@Qualifier
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.CLASS)
public @interface EnglishToGerman {

}

import org.mapstruct.Qualifier;

@Qualifier
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.CLASS)
public @interface GermanToEnglish {

}

Please take note of the target TitleTranslator on type level, EnglishToGerman, GermanToEnglish on
method level!

Then, using the qualifiers, the mapping could look like this:

50

Example 56. Mapper using qualifiers

@Mapper(uses = Titles.class)
public interface MovieMapper {

@Mapping(target = "title", qualifiedBy = { TitleTranslator.class,
EnglishToGerman.class })
GermanRelease toGerman(OriginalRelease movies);

Example 57. Custom mapper qualifying the methods it provides

@TitleTranslator
public class Titles {

@EnglishToGerman
public String translateTitleEG(String title) {
// some mapping logic

}

@GermanToEnglish
public String translateTitleGE(String title) {
// some mapping logic

}

Please make sure the used retention policy equals retention policy CLASS
(@Retention(RetentionPolicy.CLASS)).

that do not have the qualifiedBy element.

A A class / method annotated with a qualifier will not qualify anymore for mappings
(r) The same mechanism is also present on bean mappings: @BeanMapping#qualifiedBy:
- it selects the factory method marked with the indicated qualifier.
In many occasions, declaring a new annotation to aid the selection process can be too much for
what you try to achieve. For those situations, MapStruct has the @Named annotation. This annotation
is a pre-defined qualifier (annotated with @Qualifier itself) and can be used to name a Mapper or,
more directly a mapping method by means of its value. The same example above would look like:

31

Example 58. Custom mapper, annotating the methods to qualify by means of @Named

("TitleTranslator")
public class Titles {

("EnglishToGerman")
public String translateTitleEG(String title) {
// some mapping logic

}

("GermanToEnglish")
public String translateTitleGE(String title) {
// some mapping logic

}

Example 59. Mapper using named

(uses = Titles.class)
public interface MovieMapper {

(target = "title", qualifiedByName = { "TitleTranslator",
"EnglishToGerman" })
GermanRelease toGerman(OriginalRelease movies);

Although the used mechanism is the same, the user has to be a bit more careful.
A Refactoring the name of a defined qualifier in an IDE will neatly refactor all other
occurrences as well. This is obviously not the case for changing a name.

5.10. Combining qualifiers with defaults

Please note that the Mapping#defaultValue is in essence a String, which needs to be converted to the
Mapping#target. Providing a Mapping#qualifiedByName or Mapping#qualifiedBy will force MapStruct to
use that method. If you want different behavior for the Mapping#defaultValue, then please provide
an appropriate mapping method. This mapping method needs to transforms a String into the
desired type of Mapping#itarget and also be annotated so that it can be found by the
Mapping#qualifiedByName or Mapping#qualifiedBy.

32

Example 60. Mapper using defaultValue

@Mapper
public interface MovieMapper {

@Mapping(target = "category", qualifiedByName = "CategoryToString",
defaultValue = "DEFAULT")
GermanRelease toGerman(OriginalRelease movies);

@Named("CategoryToString")
default String defaultValueForQualifier(Category cat) {
// some mapping logic

}

In the above example in case that category is null, the method CategoryToString(Enum.valueOf(
Category.class, "DEFAULT")) will be called and the result will be set to the category field.

Example 61. Mapper using defaultValue and default method.

@Mapper
public interface MovieMapper {

@Mapping(target = "category", qualifiedByName = "CategoryToString",
defaultValue = "Unknown")
GermanRelease toGerman(OriginalRelease movies);

@Named("CategoryToString")
default String defaultValueForQualifier(Category cat) {
// some mapping logic

}

@Named("CategoryToString")
default String defaultValueForQualifier(String value) {
return value;

}

In the above example in case that category is null, the method defaultValueForQualifier("Unknown"
) will be called and the result will be set to the category field.

If the above mentioned methods do not work there is the option to use defaultExpression to set the
default value.

33

Example 62. Mapper using defaultExpression

public interface MovieMapper {

(target = "category", qualifiedByName = "CategoryToString",
defaultExpression = "java(\"Unknown\")")
GermanRelease toGerman(OriginalRelease movies);

("CategoryToString")
default String defaultValueForQualifier(Category cat) {
// some mapping logic

}

6. Mapping collections

The mapping of collection types (List, Set etc.) is done in the same way as mapping bean types, i.e.
by defining mapping methods with the required source and target types in a mapper interface.
MapStruct supports a wide range of iterable types from the Java Collection Framework.

The generated code will contain a loop which iterates over the source collection, converts each
element and puts it into the target collection. If a mapping method for the collection element types
is found in the given mapper or the mapper it uses, this method is invoked to perform the element
conversion. Alternatively, if an implicit conversion for the source and target element types exists,
this conversion routine will be invoked. The following shows an example:

Example 63. Mapper with collection mapping methods

public interface CarMapper {
Set<String> integerSetToStringSet(Set<Integer> integers);
List<CarDto> carsToCarDtos(List<Car> cars);

CarDto carToCarDto(Car car);

The generated implementation of the integerSetToStringSet performs the conversion from Integer
to String for each element, while the generated carsToCarDtos() method invokes the carToCarDto()
method for each contained element as shown in the following:

54

http://docs.oracle.com/javase/tutorial/collections/intro/index.html

Example 64. Generated collection mapping methods

//GENERATED CODE

public Set<String> integerSetToStringSet(Set<Integer> integers) {
if (integers == null) {
return null;

}
Set<String> set = new LinkedHashSet<String>();

for (Integer integer : integers) {
set.add(String.valueOf(integer));
}

return set;

public List<CarDto> carsToCarDtos(List<Car> cars) {
if (cars == null) {
return null;

}
List<CarDto> list = new ArraylList<CarDto>();

for (Car car : cars) {
list.add(carToCarDto(car));
}

return list;

Note that MapStruct will look for a collection mapping method with matching parameter and
return type, when mapping a collection-typed attribute of a bean, e.g. from Car#passengers (of type
List<Person>) to CarDto#passengers (of type List<PersonDto>).

Example 65. Usage of collection mapping method to map a bean property

//GENERATED CODE
carDto.setPassengers(personsToPersonDtos(car.getPassengers()));

Some frameworks and libraries only expose JavaBeans getters but no setters for collection-typed
properties. Types generated from an XML schema using JAXB adhere to this pattern by default. In
this case the generated code for mapping such a property invokes its getter and adds all the

55

mapped elements:

Example 66. Usage of an adding method for collection mapping

//GENERATED CODE
carDto.getPassengers().addA11(personsToPersonDtos(car.getPassengers()));

It is not allowed to declare mapping methods with an iterable source (from a java
package) and a non-iterable target or the other way around. An error will be
raised when detecting this situation.

6.1. Mapping maps
Also map-based mapping methods are supported. The following shows an example:

Example 67. Map mapping method

public interface SourceTargetMapper {

(valueDateFormat = "dd.MM.yyyy")
Map<String, String> longDateMapToStringStringMap(Map<Long, Date> source);

Similar to iterable mappings, the generated code will iterate through the source map, convert each
value and key (either by means of an implicit conversion or by invoking another mapping method)
and put them into the target map:

36

Example 68. Generated implementation of map mapping method

//GENERATED CODE

public Map<Long, Date> stringStringMapTolLongDateMap(Map<String, String> source) {
if (source == null) {
return null;

}
Map<Long, Date> map = new LinkedHashMap<Long, Date>();
for (Map.Entry<String, String> entry : source.entrySet()) {

Long key = Long.parseLong(entry.getKey());
Date value;

try {
value = new SimpleDateFormat("dd.MM.yyyy").parse(entry.getValue()

)
}
catch(ParseException e) {
throw new RuntimeException(e);
}
map.put(key, value);
}
return map,
}

6.2. Collection mapping strategies

MapStruct has a CollectionMappingStrategy, with the possible values: ACCESSOR_ONLY,
SETTER_PREFERRED, ADDER_PREFERRED and TARGET _IMMUTABLE.

In the table below, the dash - indicates a property name. Next, the trailing s indicates the plural
form. The table explains the options and how they are applied to the presence/absence of a set-s,
add- and / or get-s method on the target object:

Table 2. Collection mapping strategy options

Option Only target Only target Both set-s / No set-s / add- Existing
set-s Available add- Available add- Available Available Target(@Target
Type)
ACCESSOR_ONLY set-s get-s set-s get-s get-s
SETTER_PREFERR set-s add- set-s get-s get-s
ED

57

Option Only target Only target Both set-s / No set-s / add- Existing

set-s Available add- Available add- Available Available Target(@Target
Type)
ADDER_PREFERRE set-s add- add- get-s get-s
D
TARGET_IMMUTAB set-s exception set-s exception set-s
LE

Some background: An adder method is typically used in case of generated (JPA) entities, to add a
single element (entity) to an underlying collection. Invoking the adder establishes a parent-child
relation between parent - the bean (entity) on which the adder is invoked - and its child(ren), the
elements (entities) in the collection. To find the appropriate adder, MapStruct will try to make a
match between the generic parameter type of the underlying collection and the single argument of
a candidate adder. When there are more candidates, the plural setter / getter name is converted to
singular and will be used in addition to make a match.

The option DEFAULT should not be used explicitly. It is used to distinguish between an explicit user
desire to override the default in a @MapperConfig from the implicit Mapstruct choice in a @Mapper.
The option DEFAULT is synonymous to ACCESSOR_ONLY.

When working with an adder method and JPA entities, Mapstruct assumes that the

(r) target collections are initialized with a collection implementation (e.g. an

- ArrayList). You can use factories to create a new target entity with intialized
collections instead of Mapstruct creating the target entity by its constructor.

6.3. Implementation types used for collection
mappings

When an iterable or map mapping method declares an interface type as return type, one of its
implementation types will be instantiated in the generated code. The following table shows the
supported interface types and their corresponding implementation types as instantiated in the
generated code:

Table 3. Collection mapping implementation types

Interface type Implementation type
Iterable Arraylist

Collection ArraylList

List ArraylList

Set LinkedHashSet
SortedSet TreeSet

NavigableSet TreeSet

Map LinkedHashMap
SortedMap TreeMap

NavigableMap TreeMap

38

http://www.eclipse.org/webtools/dali/

Interface type Implementation type

ConcurrentMap ConcurrentHashMap

ConcurrentNavigableMap ConcurrentSkipListMap

7. Mapping Streams

The mapping of java.util.Streamis done in a similar way as the mapping of collection types, i.e. by
defining mapping methods with the required source and target types in a mapper interface.

The generated code will contain the creation of a Stream from the provided Iterable/array or will
collect the provided Stream into an Iterable/array. If a mapping method or an implicit conversion
for the source and target element types exists, then this conversion will be done in Stream#map().
The following shows an example:

Example 69. Mapper with stream mapping methods

public interface CarMapper {
Set<String> integerStreamToStringSet(Stream<Integer> integers);
List<CarDto> carsToCarDtos(Stream<Car> cars);

CarDto carToCarDto(Car car);

The generated implementation of the integerStreamToStringSet() performs the conversion from
Integer to String for each element, while the generated carsToCarDtos() method invokes the
carToCarDto() method for each contained element as shown in the following:

39

Example 70. Generated stream mapping methods

//GENERATED CODE

public Set<String> integerStreamToStringSet(Stream<Integer> integers) {
if (integers == null) {
return null;

}

return integers.map(integer -> String.valueOf(integer))
.collect(Collectors.toCollection(LinkedHashSet<String>::new));

public List<CarDto> carsToCarDtos(Stream<Car> cars) {
if (cars == null) {
return null;

}

return cars.map(car -> carToCarDto(car))
.collect(Collectors.toCollection(ArrayList<CarDto>::new));

a If a mapping from a Stream to an Iterable or an array is performed, then the
passed Stream will be consumed and it will no longer be possible to consume it.

The same implementation types as in Implementation types used for collection mappings are used
for the creation of the collection when doing Stream to Iterable mapping.

8. Mapping Values

8.1. Mapping enum to enum types
MapStruct supports the generation of methods which map one Java enum type into another.

By default, each constant from the source enum is mapped to a constant with the same name in the
target enum type. If required, a constant from the source enum may be mapped to a constant with
another name with help of the @ValueMapping annotation. Several constants from the source enum
can be mapped to the same constant in the target type.

The following shows an example:

60

Example 71. Enum mapping method

public interface OrderMapper {

OrderMapper INSTANCE = Mappers.getMapper(OrderMapper.class);

({
(target = "SPECIAL", source = "EXTRA"),
(target = "DEFAULT", source = "STANDARD"),
(target = "DEFAULT", source = "NORMAL")

1))
ExternalOrderType orderTypeToExternalOrderType(OrderType orderType);

Example 72. Enum mapping method result

// GENERATED CODE
public class OrderMapperImpl implements OrderMapper {

public ExternalOrderType orderTypeToExternalOrderType(OrderType orderType) {
if (orderType == null) {
return null;

}
ExternalOrderType externalOrderType_;

switch (orderType) {

case EXTRA: externalOrderType_ = ExternalOrderType.SPECIAL;
break;

case STANDARD: externalOrderType_ = ExternalOrderType.DEFAULT;
break;

case NORMAL: externalOrderType_
break;

case RETAIL: externalOrderType_
break;

case B2B: externalOrderType_ = ExternalOrderType.B2B;

break;

default: throw new IllegalArqumentException("Unexpected enum
+ orderType);

ExternalOrderType.DEFAULT;

ExternalOrderType.RETAIL;

n

constant:

}

return externalOrderType_;

61

By default an error will be raised by MapStruct in case a constant of the source enum type does not
have a corresponding constant with the same name in the target type and also is not mapped to
another constant via @ValueMapping. This ensures that all constants are mapped in a safe and
predictable manner. The generated mapping method will throw an I1legalStateException if for
some reason an unrecognized source value occurs.

MapStruct also has a mechanism for mapping any remaining (unspecified) mappings to a default.
This can be used only once in a set of value mappings and only applies to the source. It comes in
two flavors: <ANY_REMAINING> and <ANY_UNMAPPED>. They cannot be used at the same time.

In case of source <ANY_REMAINING> MapStruct will continue to map a source enum constant to a
target enum constant with the same name. The remainder of the source enum constants will be
mapped to the target specified in the @ValueMapping with <ANY_REMAINING> source.

MapStruct will not attempt such name based mapping for <ANY_UNMAPPED> and directly apply the
target specified in the @ValueMapping with <ANY_UNMAPPED> source to the remainder.

MapStruct is able to handle null sources and null targets by means of the <NULL> keyword.

In addition, the constant value <THROW_EXCEPTION> can be used for throwing an exception for
particular value mappings. This value is only applicable to ValueMapping#itarget() and not
ValueMapping#source() since MapStruct can’t map from exceptions.

@ Constants for <ANY_REMAINING>, <ANY_UNMAPPED>, <THROW_EXCEPTION> and <NULL> are
- available in the MappingConstants class.

Finally @InheritInverseConfiguration and @InheritConfiguration can be used in combination with
@ValueMappings. <ANY_REMAINING> and <ANY_UNMAPPED> will be ignored in that case.

The following code snippets exemplify the use of the aforementioned constants.

Example 73. Enum mapping method, <NULL> and <ANY_REMAINING>

public interface SpecialOrderMapper {

SpecialOrderMapper INSTANCE = Mappers.getMapper(SpecialOrderMapper.class);

({
(source = MappingConstants.NULL, target = "DEFAULT"),
(source = "STANDARD", target = MappingConstants.NULL),
(source = MappingConstants.ANY_REMAINING, target = "SPECIAL"
)
}
ExternalOrderType orderTypeToExternalOrderType(OrderType orderType);
}

62

Example 74. Enum mapping method result, <NULL> and <ANY_REMAINING>

// GENERATED CODE
public class SpecialOrderMapperImpl implements SpecialOrderMapper {

public ExternalOrderType orderTypeToExternalOrderType(OrderType orderType) {
if (orderType == null) {
return ExternalOrderType.DEFAULT;
}

ExternalOrderType externalOrderType_;

switch (orderType) {
case STANDARD: externalOrderType_ = null;

break;

case RETAIL: externalOrderType_ = ExternalOrderType.RETAIL;
break;

case B2B: externalOrderType_ = ExternalOrderType.B2B;
break;

default: externalOrderType_ = ExternalOrderType.SPECIAL;
}

return externalOrderType_;

Note: MapStruct would have refrained from mapping the RETAIL and B2B when <ANY_UNMAPPED> was
used instead of <ANY_REMAINING>.

Example 75. Enum mapping method with <THROW_EXCEPTION>

public interface SpecialOrderMapper {
SpecialOrderMapper INSTANCE = Mappers.getMapper(SpecialOrderMapper.class);

({
(source
(source

"STANDARD", target = "DEFAULT"),
"C2C", target = MappingConstants.THROW_EXCEPTION)

}
ExternalOrderType orderTypeToExternalOrderType(OrderType orderType);

63

Example 76. Enum mapping method with <THROW_EXCEPTION> result

// GENERATED CODE
public class SpecialOrderMapperImpl implements SpecialOrderMapper {

public ExternalOrderType orderTypeToExternalOrderType(OrderType orderType) {
if (orderType == null) {
return null;

}

ExternalOrderType externalOrderType;

switch (orderType) {
case STANDARD: externalOrderType = ExternalOrderType.DEFAULT;
break;
case C2C: throw new I1legalArgumentException("Unexpected enum

constant: " + orderType);
default: throw new IllegalArgumentException("Unexpected enum
constant: " + orderType);
}

return externalOrderType;

8.2. Mapping enum-to-String or String-to-enum

MapStruct supports enum to a String mapping along the same lines as is described in enum-to-
enum types. There are similarities and differences:

enum to String
1. Similarity: All not explicit defined mappings will result in each source enum constant value

being mapped a String value with the same constant value.

2. Similarity: <ANY_UNMAPPED> stops after handling defined mapping and proceeds to the
switch/default clause value.

3. Difference: <ANY_REMAINING> will result in an error. It acts on the premise that there is name
similarity between enum constants in source and target which does not make sense for a String

type.

4. Difference: Given 1. and 3. there will never be unmapped values.

5. Similarity: <THROW_EXCEPTION> can be used for throwing an exception for particular enum values.
String to enum

1. Similarity: All not explicit defined mappings will result in the target enum constant mapped

64

from the String value when that matches the target enum constant name.

2. Similarity: <ANY_UNMAPPED> stops after handling defined mapping and proceeds to the
switch/default clause value.

3. Similarity: <ANY_REMAINING> will create a mapping for each target enum constant and proceed to
the switch/default clause value.

4. Difference: A switch/default value needs to be provided to have a determined outcome (enum
has a limited set of values, String has unlimited options). Failing to specify <ANY_REMAINING> or
<ANY_UNMAPPED> will result in a warning.

5. Similarity: <THROW_EXCEPTION> can be used for throwing an exception for any arbitrary String
value.

8.3. Custom name transformation

When no @ValueMapping(s) are defined then each constant from the source enum is mapped to a
constant with the same name in the target enum type. However, there are cases where the source
enum needs to be transformed before doing the mapping. E.g. a suffix needs to be applied to map
from the source into the target enum.

Example 77. Enum types

public enum CheeseType {

BRIE,
ROQUEFORT

}

public enum CheeseTypeSuffixed {

BRIE_TYPE,
ROQUEFORT_TYPE

65

Example 78. Enum mapping method with custom name transformation strategy

@Mapper
public interface CheeseMapper {

CheeseMapper INSTANCE = Mappers.getMapper(CheeseMapper.class);

@EnumMapping(nameTransformationStrategy = "suffix", configuration = "_TYPE")
CheeseTypeSuffixed map(CheeseType cheese);

@InheritInverseConfiguration
CheeseType map(CheeseTypeSuffix cheese);

66

Example 79. Enum mapping method with custom name transformation strategy result

// GENERATED CODE
public class CheeseSuffixMapperImpl implements CheeseSuffixMapper {

public CheeseTypeSuffixed map(CheeseType cheese) {
if (cheese == null) {
return null;

}

CheeseTypeSuffixed cheeseTypeSuffixed;

switch (cheese) {
case BRIE: cheeseTypeSuffixed = CheeseTypeSuffixed.BRIE_TYPE;
break;
case ROQUEFORT: cheeseTypeSuffixed = CheeseTypeSuffixed.
ROQUEFORT_TYPE;

break;
default: throw new IllegalArgumentException("Unexpected enum
constant: " + cheese);
}

return cheeseTypeSuffixed;

public CheeseType map(CheeseTypeSuffixed cheese) {
if (cheese == null) {
return null;

}

CheeseType cheeseType;

switch (cheese) {
case BRIE_TYPE: cheeseType = CheeseType.BRIE;

break;
case ROQUEFORT_TYPE: cheeseType = CheeseType.ROQUEFORT;
break;
default: throw new IllegalArgumentException("Unexpected enum
constant: " + cheese);
}

return cheeseType;

MapStruct provides the following out of the box enum name transformation strategies:

* suffix - Applies a suffix on the source enum
* stripSuffix - Strips a suffix from the source enum

* prefix - Applies a prefix on the source enum

stripPrefix - Strips a prefix from the source enum

* case - Applies case transformation to the source enum. Supported case transformations are:
o upper - Performs upper case transformation to the source enum

o lower - Performs lower case transformation to the source enum

o capital - Performs capitalisation of the first character of every word in the source enum and
everything else to lowercase. A word is split by "_"

It is also possible to register custom strategies. For more information on how to do that have a look
at Custom Enum Transformation Strategy

8.4. ValueMapping Composition

The @ValueMapping annotation supports now @Target with ElementType#ANNOTATION_TYPE in addition to
ElementType#METHOD. This allows @ValueMapping to be used on other (user defined) annotations for re-
use purposes. For example:

Example 80. Custom value mapping annotations

(RetentionPolicy.CLASS)
(source = "EXTRA", target = "SPECIAL")
(source = MappingConstants.ANY_REMAINING, target = "DEFAULT")
public CustomValueAnnotation {

It can be used to describe some common value mapping relationships to avoid duplicate
declarations, as in the following example:

Example 81. Using custom combination annotations

public interface ValueMappingCompositionMapper {
ExternalOrderType orderTypeToExternalOrderType(OrderType orderType);

(source = "STANDARD", target = "SPECIAL")
ExternalOrderType duplicateAnnotation(OrderType orderType);

68

9. Object factories

By default, the generated code for mapping one bean type into another or updating a bean will call
the default constructor to instantiate the target type.

Alternatively you can plug in custom object factories which will be invoked to obtain instances of
the target type. One use case for this is JAXB which creates ObjectFactory classes for obtaining new
instances of schema types.

To make use of custom factories register them via @Mapper#uses() as described in Invoking other
mappers, or implement them directly in your mapper. When creating the target object of a bean
mapping, MapStruct will look for a parameterless method, a method annotated with
@0bjectFactory, or a method with only one @TargetType parameter that returns the required target
type and invoke this method instead of calling the default constructor:

69

Example 82. Custom object factories

public class DtoFactory {
public CarDto createCarDto() {

return // ... custom factory logic

}

public class EntityFactory {
public <T extends BaseEntity> T createEntity(@TargetType Class<T>

entityClass) {
return // ... custom factory logic

}

@Mapper (uses= { DtoFactory.class, EntityFactory.class })
public interface CarMapper {

CarMapper INSTANCE = Mappers.getMapper(CarMapper.class);
CarDto carToCarDto(Car car);

Car carDtoToCar(CarDto carDto);

70

//GENERATED CODE
public class CarMapperImpl implements CarMapper {

private final DtoFactory dtoFactory = new DtoFactory();
private final EntityFactory entityFactory = new EntityFactory();
@0verride
public CarDto carToCarDto(Car car) {
if (car == null) {

return null;

}
CarDto carDto = dtoFactory.createCarDto();
//map properties...

return carDto;

}

@0verride
public Car carDtoToCar(CarDto carDto) {
if (carDto == null) {
return null;

}

Car car = entityFactory.createEntity(Car.class);
//map properties...

return car;

71

Example 83. Custom object factories with update methods

@Mapper(uses = { DtoFactory.class, EntityFactory.class, CarMapper.class })
public interface OwnerMapper {

OwnerMapper INSTANCE = Mappers.getMapper(OwnerMapper.class);
void updateOwnerDto(Owner owner, @Mappinglarget OwnerDto ownerDto);

void updateOwner (OwnerDto ownerDto, @VMappingTarget Owner owner);

72

//GENERATED CODE
public class OwnerMapperImpl implements OwnerMapper {

private final DtoFactory dtoFactory = new DtoFactory();
private final EntityFactory entityFactory = new EntityFactory();

private final OwnerMapper ownerMapper = Mappers.getMapper(OwnerMapper.class

@0verride
public void updateOwnerDto(Owner owner, @MappingTarget OwnerDto ownerDto) {
if (owner == null) {
return;

}

if (owner.getCar() != null) {
if (ownerDto.getCar() == null) {
ownerDto.setCar(dtoFactory.createCarDto());
+
// update car within ownerDto
}
else {
ownerDto.setCar(null);

}

// updating other properties
}

@0verride
public void updateOwner(OwnerDto ownerDto, @MappingTarget Owner owner) {
if (ownerDto == null) {
return;

}

if (ownerDto.getCar() != null) {
if (owner.getCar() == null) {
owner.setCar(entityFactory.createEntity(Car.class));

}

// update car within owner

}
else {
owner.setCar(null);

}

// updating other properties
}

73

In addition, annotating a factory method with @0bjectFactory lets you gain access to the mapping
sources. Source objects can be added as parameters in the same way as for mapping method. The
@0bjectFactory annotation is necessary to let MapStruct know that the given method is only a
factory method.

Example 84. Custom object factories with @0bjectFactory

public class DtoFactory {

public CarDto createCarDto(Car car) {
return // ... custom factory logic

}

10. Advanced mapping options

This chapter describes several advanced options which allow to fine-tune the behavior of the
generated mapping code as needed.

10.1. Default values and constants

Default values can be specified to set a predefined value to a target property if the corresponding
source property is null. Constants can be specified to set such a predefined value in any case.
Default values and constants are specified as String values. When the target type is a primitive or a
boxed type, the String value is taken literal. Bit / octal / decimal / hex patterns are allowed in such a
case as long as they are a valid literal. In all other cases, constant or default values are subject to
type conversion either via built-in conversions or the invocation of other mapping methods in
order to match the type required by the target property.

A mapping with a constant must not include a reference to a source property. The following
example shows some mappings using default values and constants:

74

Example 85. Mapping method with default values and constants

(uses = StringlListMapper.class)
public interface SourceTargetMapper {

SourceTargetMapper INSTANCE = Mappers.getMapper(SourceTargetMapper.class);

(target = "stringProperty", source = "stringProp", defaultValue =
"undefined")

(target = "longProperty", source = "longProp", defaultValue = "-1")

(target = "stringConstant”, constant = "Constant Value")

(target = "integerConstant", constant = "14")

(target = "longWrapperConstant”, constant = "3001")

(target = "dateConstant", dateFormat = "dd-MM-yyyy", constant = "09-
01-2014")

(target = "stringlistConstants", constant = "jack-jill-tom")

Target sourceToTarget(Source s);

If s.getStringProp() == null, then the target property stringProperty will be set to "undefined"
instead of applying the value from s.getStringProp(). If s.getlLongProperty() == null, then the
target property longProperty will be set to -1. The String "Constant Value" is set as is to the target
property stringConstant. The value "3001" is type-converted to the Long (wrapper) class of target
property longWrapperConstant. Date properties also require a date format. The constant "jack-jill-
tom" demonstrates how the hand-written class StringlListMapper is invoked to map the dash-
separated list into a List<String>.

10.2. Expressions

By means of Expressions it will be possible to include constructs from a number of languages.

Currently only Java is supported as a language. This feature is e.g. useful to invoke constructors.
The entire source object is available for usage in the expression. Care should be taken to insert only
valid Java code: MapStruct will not validate the expression at generation-time, but errors will show
up in the generated classes during compilation.

The example below demonstrates how two source properties can be mapped to one target:

75

Example 86. Mapping method using an expression

public interface SourceTargetMapper {

SourceTargetMapper INSTANCE = Mappers.getMapper(SourceTargetMapper.class);

(target = "timeAndFormat",
expression = "java(new org.sample.TimeAndFormat(s.getTime(),
s.getFormat()))")
Target sourceToTarget(Source s);

}

The example demonstrates how the source properties time and format are composed into one target
property TimeAndFormat. Please note that the fully qualified package name is specified because
MapStruct does not take care of the import of the TimeAndFormat class (unless it’s used otherwise
explicitly in the SourceTargetMapper). This can be resolved by defining imports on the @Mapper
annotation.

Example 87. Declaring an import

imports org.sample.TimeAndFormat;

(imports = TimeAndFormat.class)
public interface SourceTargetMapper {

SourceTargetMapper INSTANCE = Mappers.getMapper(SourceTargetMapper.class);

(target = "timeAndFormat",
expression = "java(new TimeAndFormat(s.getTime(), s.getFormat()))")
Target sourceToTarget(Source s);

10.3. Default Expressions

Default expressions are a combination of default values and expressions. They will only be used
when the source attribute is null.

The same warnings and restrictions apply to default expressions that apply to expressions. Only
Java is supported, and MapStruct will not validate the expression at generation-time.

The example below demonstrates how a default expression can be used to set a value when the
source attribute is not present (e.g. is null):

76

Example 88. Mapping method using a default expression

imports java.util.UUID;

(imports = UUID.class)
public interface SourceTargetMapper {

SourceTargetMapper INSTANCE = Mappers.getMapper(SourceTargetMapper.class);

(target="1id", source="sourceld", defaultExpression = "java(
UUID.randomUUID().toString())")
Target sourceToTarget(Source s);

}

The example demonstrates how to use defaultExpression to set an ID field if the source field is null,
this could be used to take the existing sourceId from the source object if it is set, or create a new Id
if it isn’t. Please note that the fully qualified package name is specified because MapStruct does not
take care of the import of the UUID class (unless it’s used otherwise explicitly in the
SourceTargetMapper). This can be resolved by defining imports on the @Mapper annotation (see
Expressions).

10.4. Subclass Mapping

When both input and result types have an inheritance relation, you would want the correct
specialization be mapped to the matching specialization. Suppose an Apple and a Banana, which are
both specializations of Fruit.

Example 89. Specifying the sub class mappings of a fruit mapping

public interface FruitMapper {

(source = AppleDto.class, target = Apple.class)
(source = BananaDto.class, target = Banana.class)
Fruit map(FruitDto source);

If you would just use a normal mapping both the AppleDto and the BananaDto would be made into a
Fruit object, instead of an Apple and a Banana object. By using the subclass mapping an
AppleDtoToApple mapping will be used for AppleDto objects, and an BananaDtoToBanana mapping will
be used for BananaDto objects. If you try to map a GrapeDto it would still turn it into a Fruit.

In the case that the Fruit is an abstract class or an interface, you would get a compile error.

77

To allow mappings for abstract classes or interfaces you need to set the subclassExhaustiveStrategy
to RUNTIME_EXCEPTION, you can do this at the @MapperConfig, @Mapper or @BeanMapping annotations. If
you then pass a GrapeDto an I1legalArgumentException will be thrown because it is unknown how to
map a GrapeDto. Adding the missing (@SubclassMapping) for it will fix that.

Mapping method selection based on qualifiers can be used to further control which methods may
be chosen to map a specific subclass. For that, you will need to use one of
SubclassMapping#fqualifiedByName or SubclassMapping#iqualifiedBy.

If the mapping method for the subclasses does not exist it will be created and any
(;) other annotations on the fruit mapping method will be inherited by the newly
' generated mappings.

Combining @SubclassMapping with update methods is not supported. If you try to
o use subclass mappings there will be a compile error. The same issue exists for the
@Context and @TargetType parameters.

10.5. Determining the result type

When result types have an inheritance relation, selecting either mapping method (@Mapping) or a
factory method (@BeanMapping) can become ambiguous. Suppose an Apple and a Banana, which are
both specializations of Fruit.

Example 90. Specifying the result type of a bean mapping method

(uses = FruitFactory.class)
public interface FruitMapper {

(resultType = Apple.class)
Fruit map(FruitDto source);

public class FruitFactory {

public Apple createApple() {
return new Apple("Apple");
}

public Banana createBanana() {
return new Banana("Banana");

}

So, which Fruit must be factorized in the mapping method Fruit map(FruitDto source);? A Banana

78

or an Apple? Here’s where the @BeanMapping#resultType comes in handy. It controls the factory
method to select, or in absence of a factory method, the return type to create.

The same mechanism is present on mapping: @Mapping#resultType and works like
(r) you expect it would: it selects the mapping method with the desired result type

w
when present.
The mechanism is also present on iterable mapping and map mapping.
@ @IterableMappingffelementTargetType is used to select the mapping method with the
- desired element in the resulting Iterable. For the @MapMapping a similar purpose is

served by means of #MapMapping#keyTargetType and MapMapping#ivalueTargetType.

10.6. Controlling mapping result for 'null' arguments

MapStruct offers control over the object to create when the source argument of the mapping
method equals null. By default null will be returned.

However, by specifying nullValueMappingStrategy = NullValueMappingStrategy.RETURN_DEFAULT on
@BeanMapping, @IterableMapping, @MapMapping, or globally on @Mapper or @MapperConfig, the mapping
result can be altered to return empty default values. This means for:

* Bean mappings: an 'empty’ target bean will be returned, with the exception of constants and
expressions, they will be populated when present.
 Iterables / Arrays: an empty iterable will be returned.
* Maps: an empty map will be returned.
The strategy works in a hierarchical fashion. Setting nullValueMappingStrategy on mapping method

level will override @Mapper#nullValueMappingStrategy, and @Mapper#nullValueMappingStrategy will
override @MapperConfig#inul1ValueMappingStrategy.

10.7. Controlling mapping result for 'null’ collection or
map arguments

With Controlling mapping result for null' arguments it is possible to control how the return type
should be constructed when the source argument of the mapping method is null. That is applied for
all mapping methods (bean, iterable or map mapping methods).

However, MapStruct also offers a more dedicated way to control how collections / maps should be
mapped. e.g. return default (empty) collections / maps, but return null for beans.

For collections (iterables) this can be controlled through:

* MapperConfig#nullValuelterableMappingStrategy
* Mapper#inul1ValuelterableMappingStrategy
o TterableMapping#nullValueMappingStrategy

79

For maps this can be controlled through:

» MapperConfig#nul1ValueMapMappingStrategy
* Mapper#inul1ValueMapMappingStrategy
» MapMapping#nullValueMappingStrategy

How the value of the NullValueMappingStrategy is applied is the same as in Controlling mapping
result for 'null' arguments

10.8. Controlling mapping result for 'null’' properties
in bean mappings (update mapping methods only).

MapStruct offers control over the property to set in an @MappingTarget annotated target bean when
the source property equals null or the presence check method results in 'absent'.

By default the target property will be set to null.
However:

1. By specifying nullValuePropertyMappingStrategy =
NullValuePropertyMappingStrategy.SET_TO_DEFAULT on @Mapping, @BeanMapping, @Mapper or
@MapperConfig, the mapping result can be altered to return default values. For List MapStruct
generates an ArraylList, for Map a LinkedHashMap, for arrays an empty array, for String "" and for
primitive / boxed types a representation of false or 0. For all other objects an new instance is
created. Please note that a default constructor is required. If not available, use the
@Mapping#defaultValue.

2. By specifying nullValuePropertyMappingStrategy = NullValuePropertyMappingStrategy.IGNORE on
@Mapping, @BeanMapping, @Mapper or @MapperConfig, the mapping result will be equal to the original
value of the eMappingTarget annotated target.

The strategy works in a hierarchical fashion. Setting nullValuePropertyMappingStrategy on mapping
method level will override @Mapper#fnul1ValuePropertyMappingStrategy, and
@Mapper#inul1ValuePropertyMappingStrategy will override
@MapperConfig#nullValuePropertyMappingStrategy.

Some types of mappings (collections, maps), in which MapStruct is instructed to
use a getter or adder as target accessor (see CollectionMappingStrategy), MapStruct
o will always generate a source property null check, regardless of the value of the
NullValuePropertyMappingStrategy, to avoid addition of null to the target collection
or map. Since the target is assumed to be initialised this strategy will not be

applied.
@ NullValuePropertyMappingStrategy also applies when the presence checker returns
- not present.

80

10.9. Controlling checking result for 'null’' properties
in bean mapping

MapStruct offers control over when to generate a null check. By default (nul1ValueCheckStrategy =
NullValueCheckStrategy.ON_IMPLICIT_CONVERSION) a null check will be generated for:

* direct setting of source value to target value when target is primitive and source is not.
* applying type conversion and then:

a. calling the setter on the target.

b. calling another type conversion and subsequently calling the setter on the target.

c. calling a mapping method and subsequently calling the setter on the target.

First calling a mapping method on the source property is not protected by a null check. Therefore
generated mapping methods will do a null check prior to carrying out mapping on a source
property. Handwritten mapping methods must take care of null value checking. They have the
possibility to add 'meaning’ to null. For instance: mapping null to a default value.

The option nullValueCheckStrategy = NullValueCheckStrategy.ALWAYS will always include a null
check when source is non primitive, unless a source presence checker is defined on the source
bean.

The strategy works in a hierarchical fashion. @Mapping#nullValueCheckStrategy will override
@BeanMapping#inul1ValueCheckStrategy, @BeanMapping#nullValueCheckStrategy will override
@Mapper#inul1ValueCheckStrategy and @Mapper#nullValueCheckStrategy will override
@MapperConfig#nullValueCheckStrategy.

10.10. Source presence checking

Some frameworks generate bean properties that have a source presence checker. Often this is in
the form of a method hasXYZ, XYZ being a property on the source bean in a bean mapping method.
MapStruct will call this hasXYZ instead of performing a null check when it finds such hasXYZ method.

@ The source presence checker name can be changed in the MapStruct service
- provider interface (SPI). It can also be deactivated in this way.

Some types of mappings (collections, maps), in which MapStruct is instructed to
o use a getter or adder as target accessor (see CollectionMappingStrategy), MapStruct

will always generate a source property null check, regardless the value of the

NullValueCheckStrategy to avoid addition of null to the target collection or map.

10.11. Conditional Mapping

Conditional Mapping is a type of Source presence checking. The difference is that it allows users to
write custom condition methods that will be invoked to check if a property needs to be mapped or
not. Conditional mapping can also be used to check if a source parameter should be mapped or not.

81

A custom condition method for properties is a method that is annotated with
org.mapstruct.Condition and returns boolean. A custom condition method for source parameters is
annotated with org.mapstruct.SourceParameterCondition, org.mapstruct.Condition(appliesTo

org.mapstruct.ConditionStrateqy#SOURCE_PARAMETERS) or meta-annotated with Condition(appliesTo
ConditionStrateqy#SOURCE_PARAMETERS)

e.g. if you only want to map a String property when it is not null, and it is not empty then you can
do something like:

Example 91. Mapper using custom condition check method

@Mapper
public interface CarMapper {

CarDto carToCarDto(Car car);

@Condition
default boolean isNotEmpty(String value) {
return value != null && !value.isEmpty();

}

The generated mapper will look like:

Example 92. Custom condition check in generated implementation
// GENERATED CODE
public class CarMapperImpl implements CarMapper {
@0verride
public CarDto carToCarDto(Car car) {
if (car == null) {

return null;

}

CarDto carDto = new CarDto();
if (isNotEmpty(car.getOwner())) {

carDto.setOwner(car.getOwner());

}
// Mapping of other properties

return carDto;

82

When using this in combination with an update mapping method it will replace the null-check
there, for example:

Example 93. Update mapper using custom condition check method

@Mapper
public interface CarMapper {

CarDto carToCarDto(Car car, @Mappinglarget CarDto carDto);

@Condition
default boolean isNotEmpty(String value) {
return value != null && !value.isEmpty();

}

The generated update mapper will look like:

Example 94. Custom condition check in generated implementation

// GENERATED CODE
public class CarMapperImpl implements CarMapper {

@0verride
public CarDto carToCarDto(Car car, CarDto carDto) {
if (car == null) {
return carDto;

}
if (isNotEmpty(car.getOwner())) {
carDto.setOwner(car.getOwner());

} else {
carDto.setOwner(null);

}
// Mapping of other properties

return carDto;

Additionally @TargetPropertyName or @SourcePropertyName of type java.lang.String can be used in
custom condition check method:

83

Example 95. Mapper using custom condition check method with @TargetPropertyName and
@SourcePropertyName

@Mapper
public interface CarMapper {

@Mapping(target = "owner", source = "ownerName")
CarDto carToCarDto(Car car, @Mappinglarget CarDto carDto);

@Condition

default boolean isNotEmpty(
String value,
@TargetPropertyName String targetPropertyName,
@SourcePropertyName String sourcePropertyName

) {

if (targetPropertyName.equals("owner")
&& sourcePropertyName.equals("ownerName")) {

return value != null
&& lvalue.isEmpty()
&& lvalue.equals(value.tolLowerCase());

}

return value != null && !value.isEmpty();

The generated mapper with @TargetPropertyName and @SourcePropertyName will look like:

84

Example 96. Custom condition check in generated implementation

// GENERATED CODE
public class CarMapperImpl implements CarMapper {

@0verride
public CarDto carToCarDto(Car car, CarDto carDto) {
if (car == null) {
return carDto;

}

if (isNotEmpty(car.getOwner(), "owner", "ownerName")) {
carDto.setOwner(car.getOwner());

} else {
carDto.setOwner(null);

}
// Mapping of other properties

return carDto;

o If there is a custom @Condition method applicable for the property it will have a
precedence over a presence check method in the bean itself.

Methods annotated with @Condition in addition to the value of the source property
can also have the source parameter as an input.

@TargetPropertyName and @SourcePropertyName parameters can only be used in
@Condition methods.

Mapping method selection based on qualifiers is also valid for @Condition methods. In order to use a
more specific condition method you will need to use one of Mapping#conditionQualifiedByName or
Mapping#conditionQualifiedBy.

If we want to only map cars that have an id provided then we can do something like:

85

Example 97. Mapper using custom condition source parameter check method

public interface CarMapper {
CarDto carToCarDto(Car car);

default boolean hasCar(Car car) {
return car != null && car.getId() != null;

}

The generated mapper will look like:

Example 98. Custom condition source parameter check generated implementation

// GENERATED CODE
public class CarMapperImpl implements CarMapper {

public CarDto carToCarDto(Car car) {
if ('hasCar(car)) {
return null;

}

CarDto carDto = new CarDto();
carDto.setOwner(car.getOwner());
// Mapping of other properties

return carDto;

10.12. Exceptions

Calling applications may require handling of exceptions when calling a mapping method. These
exceptions could be thrown by hand-written logic and by the generated built-in mapping methods
or type-conversions of MapStruct. When the calling application requires handling of exceptions, a
throws clause can be defined in the mapping method:

86

Example 99. Mapper using custom method declaring checked exception

(uses = HandWritten.class)
public interface CarMapper {

CarDto carToCarDto(Car car) throws GearException;

The hand written logic might look like this:

Example 100. Custom mapping method declaring checked exception

public class HandWritten {

private static final String[] GEAR = {"ONE", "TwO", "THREE", "OVERDRIVE",
"REVERSE"};

public String toGear(Integer gear) throws GearException, FatalException {
if (gear == null) {
throw new FatalException("null is not a valid gear");

}

if (gear < 0 && gear > GEAR.length) {
throw new GearException("invalid gear");

}
return GEAR[gear];

MapStruct now, wraps the FatalException in a try-catch block and rethrows an unchecked
RuntimeException. MapStruct delegates handling of the GearException to the application logic
because it is defined as throws clause in the carToCarDto method:

87

Example 101. try-catch block in generated implementation

// GENERATED CODE

public CarDto carToCarDto(Car car) throws GearException {
if (car == null) {
return null;

}

CarDto carDto = new CarDto();

try {
carDto.setGear(handWritten.toGear(car.getGear()));

}
catch (FatalException e) {
throw new RuntimeException(e);

}

return carDto;

Some notes on null checks. MapStruct does provide null checking only when required: when
applying type-conversions or constructing a new type by invoking its constructor. This means that
the user is responsible in hand-written code for returning valid non-null objects. Also null objects
can be handed to hand-written code, since MapStruct does not want to make assumptions on the
meaning assigned by the user to a null object. Hand-written code has to deal with this.

11. Reusing mapping configurations

This chapter discusses different means of reusing mapping configurations for several mapping
methods: "inheritance" of configuration from other methods and sharing central configuration
between multiple mapper types.

11.1. Mapping configuration inheritance

Method-level configuration annotations such as @Mapping, @BeanMapping, @IterableMapping, etc., can
be inherited from one mapping method to a similar method wusing the annotation
@InheritConfiguration:

88

Example 102. Update method inheriting its configuration

public interface CarMapper {

(target = "numberOfSeats", source = "seatCount")
Car carDtoToCar(CarDto car);

void carDtoIntoCar(CarDto carDto, Car car);

The example above declares a mapping method carDtoToCar () with a configuration to define how
the property numberOfSeats in the type Car shall be mapped. The update method that performs the
mapping on an existing instance of Car needs the same configuration to successfully map all
properties. Declaring @InheritConfiguration on the method lets MapStruct search for inheritance
candidates to apply the annotations of the method that is inherited from.

One method A can inherit the configuration from another method B if all types of A (source types
and result type) are assignable to the corresponding types of B.

Methods that are considered for inheritance need to be defined in the current mapper, a super
class/interface, or in the shared configuration interface (as described in Shared configurations).

In case more than one method is applicable as source for the inheritance, the method name must
be specified within the annotation: @InheritConfiguration(name = "carDtoToCar").

A method can use @InheritConfiguration and override or amend the configuration by additionally
applying @Mapping, @BeanMapping, etc.

o @InheritConfiguration cannot refer to methods in a used mapper.

11.2. Inverse mappings

In case of bi-directional mappings, e.g. from entity to DTO and from DTO to entity, the mapping
rules for the forward method and the reverse method are often similar and can simply be inversed
by switching source and target.

Use the annotation @InheritInverseConfiguration to indicate that a method shall inherit the inverse
configuration of the corresponding reverse method.

In the example below, there is no need to write the inverse mapping manually. Think of a case
where there are several mappings, so writing the inverse ones can be cumbersome and error
prone.

89

Example 103. Inverse mapping method inheriting its configuration and ignoring some of them

public interface CarMapper {

(target = "seatCount", source = "numberOfSeats")
CarDto carToDto(Car car);

(target = "numberOfSeats", ignore = true)
Car carDtoToCar(CarDto carDto);

Here the carDtoToCar() method is the reverse mapping method for carToDto(). Note that any
attribute mappings from carToDto() will be applied to the corresponding reverse mapping method
as well. They are automatically reversed and copied to the method with the
@InheritInverseConfiguration annotation.

Specific mappings from the inversed method can (optionally) be overridden by ignore, expression
or constant in the mapping, e.g. like this: @Mapping(target = "numberOfSeats", ignore=true).

A method A is considered a reverse method of a method B, if the result type of A is the same as the
single source type of B and if the single source type of A is the same as the result type of B.

Methods that are considered for inverse inheritance need to be defined in the current mapper, a
super class/interface.

If multiple methods qualify, the method from which to inherit the configuration needs to be
specified using the name property like this: @InheritInverseConfiguration(name = "carToDto").

@InheritConfiguration takes, in case of conflict precedence over @InheritInverseConfiguration.

nm.n

Configurations are inherited transitively. So if method C defines a mapping @Mapping(target = "x",

ignore = true), B defines a mapping @Mapping(target = "y", ignore = true), then if A inherits from
B inherits from C, A will inherit mappings for both property x and y.

@Mapping#fexpression, @Mapping#defaultExpression, @Mapping#idefaultValue and @Mapping#constant are
excluded (silently ignored) in @InheritInverseConfiguration.

@Mapping#ignore is only applied when @Mapping#source is also present in
@InheritInverseConfiguration.

Reverse mapping of nested source properties is experimental as of the 1.1.0.Beta2 release. Reverse
mapping will take place automatically when the source property name and target property name
are identical. Otherwise, @Mapping should specify both the target name and source name. In all
cases, a suitable mapping method needs to be in place for the reverse mapping.

0 @InheritInverseConfiguration cannot refer to methods in a used mapper.

90

11.3. Shared configurations

MapStruct offers the possibility to define a shared configuration by pointing to a central interface
annotated with @MapperConfig. For a mapper to use the shared configuration, the configuration
interface needs to be defined in the @Mapper#iconfig property.

The @MapperConfig annotation has the same attributes as the @Mapper annotation. Any attributes not
given via @Mapper will be inherited from the shared configuration. Attributes specified in @Mapper
take precedence over the attributes specified via the referenced configuration class. List properties
such as uses are simply combined:

Example 104. Mapper configuration class and mapper using it

@MapperConfig(
uses = CustomMapperViaMapperConfig.class,
unmappedTargetPolicy = ReportingPolicy.ERROR

)
public interface CentralConfig {

}

@Mapper(config = CentralConfig.class, uses = { CustomMapperViaMapper.class })

// Effective configuration:

// @Mapper (

// uses = { CustomMapperViaMapper.class, CustomMapperViaMapperConfig.class },
// unmappedTargetPolicy = ReportingPolicy.ERROR

/1)

public interface SourceTargetMapper {

}

The interface holding the @MapperConfig annotation may also declare prototypes of mapping
methods that can be used to inherit method-level mapping annotations from. Such prototype
methods are not meant to be implemented or used as part of the mapper API.

91

Example 105. Mapper configuration class with prototype methods

@MapperConfig(
uses = CustomMapperViaMapperConfig.class,
unmappedTargetPolicy = ReportingPolicy.ERROR,
mappingIlnheritanceStrategy = MappingInheritanceStrategy
.AUTO_INHERIT_FROM_CONFIG

)
public interface CentralConfig {

// Not intended to be generated, but to carry inheritable mapping annotations:
@Mapping(target = "primaryKey", source = "technicalKey")
BaseEntity anyDtoToEntity(BaseDto dto);

@Mapper(config = CentralConfig.class, uses = { CustomMapperViaMapper.class })
public interface SourceTargetMapper {

@Mapping(target = "numberOfSeats", source = "seatCount")

// additionally inherited from CentralConfig, because Car extends BaseEntity
and CarDto extends BaseDto:

// @Mapping(target = "primaryKey", source = "technicalKey")

Car toCar(CarDto car)

The attributes @Mapper#mappingInheritanceStrategy() / @MapperConfig#mappingInheritanceStrategy()
configure when the method-level mapping configuration annotations are inherited from prototype
methods in the interface to methods in the mapper:

o EXPLICIT (default): the configuration will only be inherited, if the target mapping method is

92

annotated with @InheritConfiguration and the source and target types are assignable to the
corresponding types of the prototype method, all as described in Mapping configuration
inheritance

AUTO_INHERIT_FROM_CONFIG: the configuration will be inherited automatically, if the source and
target types of the target mapping method are assignable to the corresponding types of the
prototype method. If multiple prototype methods match, the ambiguity must be resolved using
@InheritConfiguration(name = ---) which will cause AUTO_INHERIT_FROM_CONFIG to be ignored.

AUTO_INHERIT_REVERSE_FROM_CONFIG: the inverse configuration will be inherited automatically, if
the source and target types of the target mapping method are assignable to the corresponding
types of the prototype method. If multiple prototype methods match, the ambiguity must be
resolved using @InheritInverseConfiguration(name =) which will cause
YAUTO_INHERIT_REVERSE_FROM_CONFIG to be ignored.

AUTO_INHERIT_ALL_FROM_CONFIG: both the configuration and the inverse configuration will be
inherited automatically. The same rules apply as for AUTO_INHERIT_FROM_CONFIG or
AUTO_INHERIT_REVERSE_FROM_CONFIG.

12. Customizing mappings

Sometimes it’s needed to apply custom logic before or after certain mapping methods. MapStruct
provides two ways for doing so: decorators which allow for a type-safe customization of specific
mapping methods and the before-mapping and after-mapping lifecycle methods which allow for a
generic customization of mapping methods with given source or target types.

12.1. Mapping customization with decorators

In certain cases it may be required to customize a generated mapping method, e.g. to set an
additional property in the target object which can’t be set by a generated method implementation.
MapStruct supports this requirement using decorators.

7 When working with the component model cdi, use CDI decorators with MapStruct
- mappers instead of the @DecoratedWith annotation described here.

To apply a decorator to a mapper class, specify it using the @DecoratedWith annotation.

Example 106. Applying a decorator

(PersonMapperDecorator.class)
public interface PersonMapper {

PersonMapper INSTANCE = Mappers.getMapper(PersonMapper.class);
PersonDto personToPersonDto(Person person);

AddressDto addressToAddressDto(Address address);

The decorator must be a sub-type of the decorated mapper type. You can make it an abstract class
which allows to only implement those methods of the mapper interface which you want to
customize. For all non-implemented methods, a simple delegation to the original mapper will be
generated using the default generation routine.

The PersonMapperDecorator shown below customizes the personToPersonDto(). It sets an additional
attribute which is not present in the source type of the mapping. The addressToAddressDto() method
is not customized.

93

https://docs.jboss.org/cdi/spec/1.0/html/decorators.html

Example 107. Implementing a decorator

public abstract class PersonMapperDecorator implements PersonMapper {
private final PersonMapper delegate;

public PersonMapperDecorator(PersonMapper delegate) {
this.delegate = delegate;
}

public PersonDto personToPersonDto(Person person) {
PersonDto dto = delegate.personToPersonDto(person);
dto.setFullName(person.getFirstName() + " " + person.getlLastName());
return dto;

The example shows how you can optionally inject a delegate with the generated default
implementation and use this delegate in your customized decorator methods.

For a mapper with componentModel = "default", define a constructor with a single parameter which
accepts the type of the decorated mapper.

When working with the component models spring or jsr330, this needs to be handled differently.

12.1.1. Decorators with the Spring component model

When wusing @DecoratedWith on a mapper with component model spring, the generated
implementation of the original mapper is annotated with the Spring annotation
@Qualifier("delegate"). To autowire that bean in your decorator, add that qualifier annotation as
well:

94

Example 108. Spring-based decorator

public abstract class PersonMapperDecorator implements PersonMapper {

("delegate")
private PersonMapper delegate;

public PersonDto personToPersonDto(Person person) {
PersonDto dto = delegate.personToPersonDto(person);
dto.setName(person.getFirstName() + " " + person.getlLastName());

return dto;

The generated class that extends the decorator is annotated with Spring’s @Primary annotation. To
autowire the decorated mapper in the application, nothing special needs to be done:

Example 109. Using a decorated mapper

private PersonMapper personMapper; // injects the decorator, with the injected
original mapper

12.1.2. Decorators with the JSR 330 component model

JSR 330 doesn’t specify qualifiers and only allows to specifically name the beans. Hence, the
generated implementation of the original mapper is annotated with @Named("fully-qualified-name-
of-generated-implementation") (please note that when using a decorator, the class name of the
mapper implementation ends with an underscore). To inject that bean in your decorator, add the
same annotation to the delegate field (e.g. by copy/pasting it from the generated class):

95

Example 110. JSR 330 based decorator

public abstract class PersonMapperDecorator implements PersonMapper {

("org.examples.PersonMapperImpl_")
private PersonMapper delegate;

public PersonDto personToPersonDto(Person person) {
PersonDto dto = delegate.personToPersonDto(person);
dto.setName(person.getFirstName() + " " + person.getlLastName());

return dto;

Unlike with the other component models, the usage site must be aware if a mapper is decorated or
not, as for decorated mappers, the parameterless @Named annotation must be added to select the
decorator to be injected:

Example 111. Using a decorated mapper with JSR 330

private PersonMapper personMapper; // injects the decorator, with the injected
original mapper

12.2. Mapping customization with before-mapping and
after-mapping methods

Decorators may not always fit the needs when it comes to customizing mappers. For example, if you
need to perform the customization not only for a few selected methods, but for all methods that
map specific super-types: in that case, you can use callback methods that are invoked before the
mapping starts or after the mapping finished.

Callback methods can be implemented in the abstract mapper itself, in a type reference in
Mapper#uses, or in a type used as @Context parameter.

96

Example 112. Mapper with @BeforeMapping and @AfterMapping hooks

@Mapper
public abstract class VehicleMapper {

@BeforeMapping
protected void flushEntity(AbstractVehicle vehicle) {
// T would call my entity manager's flush() method here to make sure my
entity
// 1s populated with the right @Version before I let it map into the DTO

}

@AfterMapping
protected void fillTank(AbstractVehicle vehicle, @MappingTarget
AbstractVehicleDto result) {
result.fuelUp(new Fuel(vehicle.getTankCapacity(), vehicle.getFuelType()

));
}

public abstract CarDto toCarDto(Car car);
b

// Generates something like this:
public class VehicleMapperImpl extends VehicleMapper {

public CarDto toCarDto(Car car) {
flushEntity(car);

if (car == null) {
return null;

}

CarDto carDto = new CarDto();
// attributes mapping ...

fillTank(car, carDto);

return carDto;

If the @BeforeMapping / @AfterMapping method has parameters, the method invocation is only
generated if the return type of the method (if non-void) is assignable to the return type of the
mapping method and all parameters can be assigned by the source or target parameters of the
mapping method:

* A parameter annotated with @MappingTarget is populated with the target instance of the
mapping.

97

* A parameter annotated with @TargetType is populated with the target type of the mapping.

* Parameters annotated with @Context are populated with the context parameters of the mapping
method.

* Any other parameter is populated with a source parameter of the mapping.

For non-void methods, the return value of the method invocation is returned as the result of the
mapping method if it is not null.

As with mapping methods, it is possible to specify type parameters for before/after-mapping
methods.

Example 113. Mapper with @AfterMapping hook that returns a non-null value

public abstract class VehicleMapper {

private EntityManager entityManager;

protected <T> T attachEntity(T entity) {
return entityManager.merge(entity);

}

public abstract CarDto toCarDto(Car car);
}

// Generates something like this:
public class VehicleMapperImpl extends VehicleMapper {

public CarDto toCarDto(Car car) {
if (car == null) {
return null;

}

CarDto carDto = new CarDto();
// attributes mapping ...

CarDto target = attachEntity(carDto);
if (target != null) {
return target;

}

return carDto;

All before/after-mapping methods that can be applied to a mapping method will be used. Mapping

98

method selection based on qualifiers can be used to further control which methods may be chosen
and which not. For that, the qualifier annotation needs to be applied to the before/after-method and
referenced in BeanMapping#qualifiedBy or IterableMapping#qualifiedBy.

The order of the method invocation is determined primarily by their variant:

1. @BeforeMapping methods without parameters, a @MappingTarget parameter or a @TargetType
parameter are called before any null-checks on source parameters and constructing a new
target bean.

2. @BeforeMapping methods with a @MappingTarget parameter are called after constructing a new
target bean.

3. @AfterMapping methods are called at the end of the mapping method before the last return
statement.

Within those groups, the method invocations are ordered by their location of definition:

1. Methods declared on @Context parameters, ordered by the parameter order.
2. Methods implemented in the mapper itself.

3. Methods from types referenced in Mapper#uses(), in the order of the type declaration in the
annotation.

4. Methods declared in one type are used after methods declared in their super-type.

Important: the order of methods declared within one type can not be guaranteed, as it depends on
the compiler and the processing environment implementation.

Before/After-mapping methods can also be used with builders:

» @BeforeMapping methods with a @MappingTarget parameter of the real target will
not be invoked because it is only available after the mapping was already
performed.

* To be able to modify the object that is going to be built, the @AfterMapping
o annotated method must have the builder as @MappingTarget annotated
parameter. The build method is called when the @AfterMapping annotated

method scope finishes.

* The @AfterMapping annotated method can also have the real target as
@TargetType or @MappingTarget. It will be invoked after the real target was built
(first the methods annotated with @TargetType, then the methods annotated
with @MappingTarget)

13. Using the MapStruct SPI

To use a custom SPI implementation, it must be located in a separate JAR file together with a file
named after the SPI (e.g. org.mapstruct.ap.spi.AccessorNamingStrategy) in META-INF/services/ with
the fully qualified name of your custom implementation as content (e.g.
org.mapstruct.example.CustomAccessorNamingStrategy). This JAR file needs to be added to the

99

annotation processor classpath (i.e. add it next to the place where you added the mapstruct-
processor jar).

It might also be necessary to add the jar to your IDE’s annotation processor factory
o path. Otherwise you might get an error stating that it cannot be found, while a run
using your build tool does succeed.

13.1. Custom Accessor Naming Strategy

SPI name: org.mapstruct.ap.spi.AccessorNamingStrategy

MapStruct offers the possibility to override the AccessorNamingStrategy via the Service Provider
Interface (SPI). A nice example is the use of the fluent API on the source object GolfPlayer and
GolfPlayerDto below.

Example 114. Source object GolfPlayer with fluent APL

public class GolfPlayer {

private double handicap;
private String name;

public double handicap() {
return handicap;

}

public GolfPlayer withHandicap(double handicap) {
this.handicap = handicap;
return this;

}

public String name() {
return name;

}

public GolfPlayer withName(String name) {
this.name = name;
return this;

100

Example 115. Source object GolfPlayerDto with fluent API.

public class GolfPlayerDto {

private double handicap;
private String name;

public double handicap() {
return handicap;

}
public GolfPlayerDto withHandicap(double handicap) {
this.handicap = handicap;

return this;

}

public String name() {
return name;

}

public GolfPlayerDto withName(String name) {
this.name = name;
return this;

We want GolfPlayer to be mapped to a target object GolfPlayerDto similar like we 'always' do this:

Example 116. Source object with fluent API.

public interface GolfPlayerMapper {
GolfPlayerMapper INSTANCE = Mappers.getMapper(GolfPlayerMapper.class);
GolfPlayerDto toDto(GolfPlayer player);

GolfPlayer toPlayer(GolfPlayerDto player);

This can be achieved with implementing the SPI org.mapstruct.ap.spi.AccessorNamingStrategy as in
the following example. Here’s an implemented org.mapstruct.ap.spi.AccessorNamingStrategy:

101

Example 117. CustomAccessorNamingStrategy

/**

* A custom {@link AccessorNamingStrategy} recognizing getters in the form of
{@code property()} and setters in the

* form of {@code withProperty(value)}.

*/

public class CustomAccessorNamingStrategy extends DefaultAccessorNamingStrategy {

@0verride
public boolean isGetterMethod(ExecutableElement method) {
String methodName = method.getSimpleName().toString();
return !methodName.startsWith("with") && method.getReturnType().getKind
() != TypeKind.VOID;
}

@0verride
public boolean isSetterMethod(ExecutableElement method) {

String methodName = method.getSimpleName().toString();

return methodName.startsWith("with") && methodName.length() > 4;
}

@0verride
public String getPropertyName(ExecutableElement getterOrSetterMethod) {
String methodName = getterOrSetterMethod.getSimpleName().toString();
return IntrospectorUtils.decapitalize(methodName.startsWith("with") ?
methodName.substring(4) : methodName);
}
}

The CustomAccessorNamingStrategy makes use of the DefaultAccessorNamingStrategy (also available in
mapstruct-processor) and relies on that class to leave most of the default behaviour unchanged.

(r) Fore more details: The example above is present in our examples repository
- (https://github.com/mapstruct/mapstruct-examples).

13.2. Mapping Exclusion Provider

SPI name: org.mapstruct.ap.spi.MappingExclusionProvider

MapStruct offers the possibility to override the MappingExclusionProvider via the Service Provider
Interface (SPI). A nice example is to not allow MapStruct to create an automatic sub-mapping for a
certain type, i.e. MapStruct will not try to generate an automatic sub-mapping method for an
excluded type.

102

https://github.com/mapstruct/mapstruct-examples

The DefaultMappingExclusionProvider will exclude all types under the java or javax

o packages. This means that MapStruct will not try to generate an automatic sub-
mapping method between some custom type and some type declared in the Java
class library.

Example 118. Source object

public class Source {
static class NestedSource {

private String property;
// getters and setters

private NestedSource nested;
// getters and setters

Example 119. Target object

public class Target {

static class NestedTarget {
private String property;
// getters and setters

private NestedTarget nested;
// getters and setters

Example 120. Mapper definition

@Mapper
public interface ErroneousCustomExclusionMapper {

Target map(Source source);

We want to exclude the NestedTarget from the automatic sub-mapping method generation.

103

Example 121. CustomMappingExclusionProvider

import java.util.regex.Pattern;
import javax.lang.model.element.Name;
import javax.lang.model.element.TypeElement;

import org.mapstruct.ap.spi.MappingExclusionProvider;

public class CustomMappingExclusionProvider implements MappingExclusionProvider {
private static final Pattern JAVA_JAVAX_PACKAGE = Pattern.compile("Ajavax?
\\LL*Y),

public boolean isExcluded(TypeElement typeElement) {
Name name = typeElement.getQualifiedName();
return name.length() !'= 0 && (JAVA_JAVAX_PACKAGE.matcher(name).matches

O 11

name.toString().equals(
"org.mapstruct.ap.test.nestedbeans.exclusions.custom.Target.NestedTarget"));

}
}

13.3. Custom Builder Provider

SPI name: org.mapstruct.ap.spi.BuilderProvider

MapStruct offers the possibility to override the DefaultProvider via the Service Provider Interface
(SPD). A nice example is to provide support for a custom builder strategy.

Example 122. Custom Builder Provider which disables Builder support

import javax.lang.model.type.TypeMirror;

public class NoOpBuilderProvider implements BuilderProvider {

public BuilderInfo findBuilderInfo(TypeMirror type) {
return null;

}

13.4. Custom Enum Naming Strategy

SPI name: org.mapstruct.ap.spi.EnumMappingStrategy

104

MapStruct offers the possibility to override the EnumMappingStrategy via the Service Provider
Interface (SPI). This can be used when you have certain enums that follow some conventions within
your organization. For example all enums which implement an interface named CustomEnumMarker
are prefixed with CUSTOM_ and the default value for them when mapping from null is UNSPECIFIED

Example 123. Normal Enum

public enum CheeseType {
BRIE,
ROQUEFORT;

Example 124. Custom marker enum

public enum CustomCheeseType implements CustomEnumMarker {
UNSPECIFIED,

CUSTOM_BRIE,
CUSTOM_ROQUEFORT;

We want CheeseType and CustomCheeseType to be mapped without the need to manually define the
value mappings:

Example 125. Custom enum mapping

public interface CheeseTypeMapper {
CheeseType map(CustomCheeseType cheese);

CustomCheeseType map(CheeseType cheese);

This can be achieved with implementing the SPI org.mapstruct.ap.spi.EnumMappingStrategy as in the
following example. Here’s an implemented org.mapstruct.ap.spi.EnumMappingStrategy:

105

Example 126. Custom enum naming strategy

public class CustomEnumMappingStrategy extends DefaultEnumMappingStrategy {

public String getDefaultNullEnumConstant(TypeElement enumType) {
if (isCustomEnum(enumType)) {
return "UNSPECIFIED";

}

return super.getDefaultNullEnumConstant(enumType);

public String getEnumConstant(TypeElement enumType, String enumConstant) {
if (isCustomEnum(enumType)) {
return getCustomEnumConstant(enumConstant);
}
return super.getEnumConstant(enumType, enumConstant);
}
protected String getCustomEnumConstant(String enumConstant) {
if ("UNSPECIFIED".equals(enumConstant)) {
return MappingConstantsGem.NULL;
}
return enumConstant.replace("CUSTOM_", "");
}
protected boolean isCustomEnum(TypeElement enumType) {
for (TypeMirror enumTypelnterface : enumType.getInterfaces()) {
if (typeUtils.asElement(enumTypelnterface).getSimpleName()
.contentEquals("CustomEnumMarker")) {
return true;
}
}

return false;

The generated code then for the CheeseMapper looks like:

106

Example 127. Generated CheeseTypeMapper

public class CheeseTypeMapperImpl implements CheeseTypeMapper {

public CheeseType map(CustomCheeseType cheese) {
if (cheese == null) {
return null;

}

CheeseType cheeseType;

switch (cheese) {
case UNRECOGNIZED: cheeseType = null;

break;

case CUSTOM_BRIE: cheeseType = CheeseType.BRIE;

break;

case CUSTOM_ROQUEFORT: cheeseType = CheeseType.ROQUEFORT;

break;

default: throw new IllegalArgumentException("Unexpected enum
constant: " + cheese);

}

return cheeseType;

public CustomCheeseType map(CheeseType cheese) {
if (cheese == null) {
return CustomCheeseType.UNSPECIFIED;
}

CustomCheeseType customCheeseType;

switch (cheese) {
case BRIE: customCheeseType = CustomCheeseType.CUSTOM_BRIE;

break;
case ROQUEFORT: customCheeseType = CustomCheeseType.CUSTOM_ROQUEFORT;
break;
default: throw new IllegalArgumentException("Unexpected enum
constant: " + cheese);
}

return customCheeseType;

107

13.5. Custom Enum Transformation Strategy

SPI name: org.mapstruct.ap.spi.EnumTransformationStrategy

MapStruct offers the possibility to other transformations strategies by implementing
EnumTransformationStrategy via the Service Provider Interface (SPI). A nice example is to provide
support for a custom transformation strategy.

Example 128. Custom Enum Transformation Strategy which lower-cases the value and applies a suffix

import org.mapstruct.ap.spi.EnumTransformationStrategy;

public class CustomEnumTransformationStrategy implements
EnumTransformationStrategy {

public String getStrategyName() {
return "custom";

}

public String transform(String value, String configuration) {
return value.tolLowerCase() + confiquration;

}

13.6. Additional Supported Options Provider

SPI name: org.mapstruct.ap.spi.AdditionalSupportedOptionsProvider

MapStruct offers the ability to pass through declared compiler args (or "options") provided to the
MappingProcessor to the individual SPIs, by implementing AdditionalSupportedOptionsProvider via
the Service Provider Interface (SPI).

108

Example 129. Custom Additional Supported Options Provider that declares
myorg.custom.defaultNullEnumConstant as an option to pass through

import java.util.Collections;
import java.util.Set;

import org.mapstruct.ap.spi.AdditionalSupportedOptionsProvider;

public class CustomAdditionalSupportedOptionsProvider implements
AdditionalSupportedOptionsProvider {

public Set<String> getAdditionalSupportedOptions() {
return Collections.singleton("myorg.custom.defaultNullEnumConstant");

}

The value of this option is provided by including an arg to the compilerArgs tag when defining your
custom SPI implementation.

Example 130. Example maven configuration with additional options

<confiquration>
<annotationProcessorPaths>
<path>
<groupId>org.myorg</groupId>
<artifactId>custom-spi-impl</artifactld>
<version>${project.version}</version>
</path>
</annotationProcessorPaths>
<compilerArgs>
<arg>-Amyorg.custom.defaultNullEnumConstant=MISSING</arg>
</compilerArgs>
</configuration>

Your custom SPI implementations can then access this configured value via
MapStructProcessingEnvironment#getOptions().

109

Example 131. Accessing your custom options

import javax.lang.model.element.TypeElement;

import org.mapstruct.ap.spi.DefaultEnumMappingStrategy;
import org.mapstruct.ap.spi.MapStructProcessingEnvironment;

public class UnknownEnumMappingStrategy extends DefaultEnumMappingStrategy {

private String defaultNullEnumConstant;

public void init(MapStructProcessingEnvironment processingEnvironment) {
super.init(processingEnvironment);
defaultNullEnumConstant = processingEnvironment.getOptions().get(
"myorg.custom.defaultNullEnumConstant");

}

public String getDefaultNullEnumConstant(TypeElement enumType) {
return defaultNullEnumConstant;

}

14. Third-party API integration

14.1. Non-shipped annotations

There are various use-cases you must resolve ambiguity for MapStruct to use a correct piece of
code. However, the primary goal of MapStruct is to focus on bean mapping without polluting the
entity code. For that reason, MapStruct is flexible enough to interact with already defined
annotations from third-party libraries. The requirement to enable this behavior is to match the
name of such annotation. Hence, we say that annotation can be from any package.

The annotations named @ConstructorProperties and @Default are currently examples of this kind of
annotation.

If such named third-party annotation exists, it does not guarantee its @Target

A matches with the intended placement. Be aware of placing a third-party
annotation just for sake of mapping is not recommended as long as it might lead to
unwanted side effects caused by that library.

A very common case is that no third-party dependency imported to your project provides such

annotation or is inappropriate for use as already described. In such cases create your own
annotation, for example:

110

package foo.support.mapstruct;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

(ElementType.CONSTRUCTOR)
(RetentionPolicy.CLASS)
public Default {

}

14.2. Lombok

MapStruct works together with Project Lombok as of MapStruct 1.2.0.Betal and Lombok 1.16.14.

MapStruct takes advantage of generated getters, setters, and constructors and uses them to
generate the mapper implementations. Be reminded that the generated code by Lombok might not
always be compatible with the expectations from the individual mappings. In such a case, either
Mapstruct mapping must be changed or Lombok must be configured accordingly using
lombok.config for mutual synergy.

Lombok 1.18.16 introduces a breaking change (changelog). The additional
annotation processor lombok-mapstruct-binding (Maven) must be added otherwise
MapStruct stops working with Lombok. This resolves the compilation issues of
Lombok and MapStruct modules.

A <path>

<groupId>org.projectlombok</groupId>
<artifactId>lombok-mapstruct-binding</artifactld>
<version>0.2.0</version>

</path>

14.2.1. Set up

The set up using Maven or Gradle does not differ from what is described in Set up. Additionally, you
need to provide Lombok dependencies.

111

https://projectlombok.org/
https://projectlombok.org/features/configuration
https://projectlombok.org/changelog
https://mvnrepository.com/artifact/org.projectlombok/lombok-mapstruct-binding

Example 132. Maven configuration

<properties>
<org.mapstruct.version>1.6.3</org.mapstruct.version>
<org.projectlombok.version>1.18.16</org.projectlombok.version>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
</properties>

<dependencies>
<dependency>
<groupId>org.mapstruct</groupld>
<artifactId>mapstruct</artifactId>
<version>${org.mapstruct.version}</version>
</dependency>

<!-- lombok dependency should not end up on classpath -->

<dependency>
<groupld>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>${org.projectlombok.version}</version>
<scope>provided</scope>

</dependency>

</dependencies>

<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<confiquration>
<source>1.8</source>
<target>1.8</target>
<annotationProcessorPaths>
<path>
<groupld>org.mapstruct</groupld>
<artifactId>mapstruct-processor</artifactId>
<version>${org.mapstruct.version}</version>
</path>
<path>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>${org.projectlombok.version}</version>
</path>

<!-- additional annotation processor required as of Lombok
1.18.16 -->
<path>
<groupld>org.projectlombok</groupId>

112

<artifactId>lombok-mapstruct-binding</artifactId>
<version>0.2.0</version>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
</plugins>
</build>

Example 133. Gradle configuration (3.4 and later)

dependencies {

implementation "org.mapstruct:mapstruct:$1.6.3"

compileOnly "org.projectlombok:lombok:1.18.16"

annotationProcessor "org.projectlombok:lombok-mapstruct-binding:0.2.0"
annotationProcessor "org.mapstruct:mapstruct-processor:$1.6.3"
annotationProcessor "org.projectlombok:1lombok:1.18.16"

The usage combines what you already know from Defining a mapper and Lombok.

113

Example 134. Usage of MapStruct with Lombok
@Data
public class Source {

private String test;

}

public class Target {
private Long testing;
public Long getTesting() {

return testing;

}

public void setTesting(Long testing) {
this.testing = testing;
}
}

@Mapper
public interface SourceTargetMapper {

SourceTargetMapper MAPPER = Mappers.getMapper(SourceTargetMapper.class);

@Mapping(source = "test", target = "testing")
Target toTarget(Source s);

A working example can be found on the GitHub project mapstruct-lombok.

114

https://github.com/mapstruct/mapstruct-examples/tree/master/mapstruct-lombok

	MapStruct 1.6.3 Reference Guide
	Table of Contents
	Preface
	1. Introduction
	2. Set up
	2.1. Apache Maven
	2.2. Gradle
	2.3. Apache Ant
	2.4. Configuration options
	2.5. Using MapStruct with the Java Module System
	2.6. IDE Integration

	3. Defining a mapper
	3.1. Basic mappings
	3.2. Mapping Composition
	3.3. Adding custom methods to mappers
	3.4. Mapping methods with several source parameters
	3.5. Mapping nested bean properties to current target
	3.6. Updating existing bean instances
	3.7. Mappings with direct field access
	3.8. Using builders
	3.9. Using Constructors
	3.10. Mapping Map to Bean
	3.11. Adding annotations
	3.12. Adding Javadoc comments

	4. Retrieving a mapper
	4.1. The Mappers factory (no dependency injection)
	4.2. Using dependency injection
	4.3. Injection strategy

	5. Data type conversions
	5.1. Implicit type conversions
	5.2. Mapping object references
	5.3. Controlling nested bean mappings
	5.4. Invoking custom mapping method
	5.5. Invoking other mappers
	5.6. Passing the mapping target type to custom mappers
	5.7. Passing context or state objects to custom methods
	5.8. Mapping method resolution
	5.9. Mapping method selection based on qualifiers
	5.10. Combining qualifiers with defaults

	6. Mapping collections
	6.1. Mapping maps
	6.2. Collection mapping strategies
	6.3. Implementation types used for collection mappings

	7. Mapping Streams
	8. Mapping Values
	8.1. Mapping enum to enum types
	8.2. Mapping enum-to-String or String-to-enum
	8.3. Custom name transformation
	8.4. ValueMapping Composition

	9. Object factories
	10. Advanced mapping options
	10.1. Default values and constants
	10.2. Expressions
	10.3. Default Expressions
	10.4. Subclass Mapping
	10.5. Determining the result type
	10.6. Controlling mapping result for 'null' arguments
	10.7. Controlling mapping result for 'null' collection or map arguments
	10.8. Controlling mapping result for 'null' properties in bean mappings (update mapping methods only).
	10.9. Controlling checking result for 'null' properties in bean mapping
	10.10. Source presence checking
	10.11. Conditional Mapping
	10.12. Exceptions

	11. Reusing mapping configurations
	11.1. Mapping configuration inheritance
	11.2. Inverse mappings
	11.3. Shared configurations

	12. Customizing mappings
	12.1. Mapping customization with decorators
	12.2. Mapping customization with before-mapping and after-mapping methods

	13. Using the MapStruct SPI
	13.1. Custom Accessor Naming Strategy
	13.2. Mapping Exclusion Provider
	13.3. Custom Builder Provider
	13.4. Custom Enum Naming Strategy
	13.5. Custom Enum Transformation Strategy
	13.6. Additional Supported Options Provider

	14. Third-party API integration
	14.1. Non-shipped annotations
	14.2. Lombok

